Showing posts with label SCIENTISTS. Show all posts
Showing posts with label SCIENTISTS. Show all posts

Wednesday, February 4, 2015

THE FUNDAMENTAL PHYSICIST INVESTIGATES THE UNIVERSE

FROM:  NATIONAL SCIENCE FOUNDATION 
Scientist who helped discover the expansion of the universe is accelerating
Breakthrough Prize winner continues investigating fundamental physics of the world
February 3, 2015

In the late 1980s, astrophysicist Saul Perlmutter and his colleagues set out to determine how much the expansion of the universe was slowing. At the time, the prevailing belief among scientists was that gravity would be slowing the expansion, perhaps enough to ultimately switch to a contracting universe that would cause the galaxies to draw even closer together.

Of course, the world learned in 1998 that this was not the case. As it turned out, the expansion of the universe was, in fact, not slowing at all, but speeding up.

"That means there is something else going on besides gravity," says Perlmutter, director of the Supernova Cosmology Project at Lawrence Berkeley National Laboratory, who shared the 2011 Nobel Prize in physics for the work. "We thought we understood the physics, but this was a real surprise."

The "something else" is an enduring mystery that continues to fascinate, and elude, scientists today, Perlmutter among them. Astrophysicists refer to it as "dark energy."

"We call it 'dark' because we don't know what it is," he says. "But it possibly means that as much as 70 percent of the universe could be made out of this previously unknown energy."

Moreover, researchers don't know why the universe is speeding up. "But it leaves the possibility that if whatever is speeding it up goes away, then it will start to slow down again," he says. "There is still a lot in play, and we are still trying to learn what it is."

It's an exciting prospect, since research into the ongoing puzzle of dark energy could provide "a new understanding of the fundamental physics of the world," Perlmutter says. "We have no idea what the consequences will be if we learn what dark energy is. But history has shown us that these kinds of steps forward in our fundamental understanding make us a more capable civilization.

"Moreover, learning how this world is put together, in a way, is a deep, almost poetic experience," he adds.

Perlmutter, also a professor of physics at the University of California, Berkeley, is a recent recipient of the 2015 Breakthrough Prize in Fundamental Physics, sharing the $3 million award with his Supernova Cosmology Project team, and with Brian P. Schmidt, an astrophysicist at the Australian National University Mount Stromlo Observatory and Research School, and Adam Riess, an astrophysicist at The Johns Hopkins University and the Space Telescope Science Institute, and the High-Z Supernova Search team that they led.

The three, who also shared the 2011 Nobel, received the Breakthrough Prize together with their teams for their work providing evidence that the expansion of the universe is accelerating.

For Perlmutter, the research leading to this discovery began in 1987, with a project under the auspices of the newly created Center for Particle Astrophysics, a National Science Foundation science and technology center based at Berkeley. Perlmutter, a postdoctoral fellow at the time, designed the study with Carl Pennypacker, also a researcher in the group which was then under the direction of physics professor Richard Muller, a 1978 NSF Alan T. Waterman award winner.

"When the project began in 1987, the standard picture of cosmology was that the universe was expanding, but everyone assumed it would slow down because gravity would attract everything to everything else," Perlmutter says. "We wanted to find out: How dense is the universe? How much is it slowing down?"

The scientists decided to try to measure the state of the universe by looking several billion years in the past using a new understanding in the field about a specific type of supernova, or exploding star, called Type Ia, that explodes in a similar way every time. "Since they brighten to essentially the same brightness every time, and then fade away, we can tell how far away they are by measuring how bright they appear to us," he says.

Since light always travels at 186,000 miles per second, researchers can then use the distance measurement to calculate how long ago these supernovae exploded. Also, while the light is traveling--and the universe is expanding--the light waves traveling from the exploding supernova stretch along with everything else. As these wavelengths stretch, they look redder and redder, a phenomenon in astronomy known as "redshift."

"When the supernova explodes, it sends out mostly blue light," Perlmutter explains. "That blue light means a short wave length of light. The more it stretches, the more it starts to turn red. And that tells us the amount the universe stretched between the time of the explosion, and today."

Taken together, the brightness and colors of the supernovae provide compelling evidence of an accelerating expanding universe. The degree of their brightness reveals how far back in time the star exploded, and the extent of redshift indicates how much the universe has expanded during that time. So a series of measurements each taken for a supernova exploding at a different time throughout history--7, 4 and 2 billion years ago--revealed that the stretching of the universe was increasing, and that it wasn't slowing down at all.

The difficulty initially was finding these supernovae in time, since they are rare and random, and reserving a stint at some of the largest and most advanced telescopes in the world, not to mention hoping for good weather.

Ultimately, they found a way to make discovering Type Ia supernovae more predictable.

"Instead of watching one galaxy, we figured out how to use novel wide-field cameras on the big telescopes to watch thousands of galaxies," he says. "You take a bunch of images one night, then go away, then come back two and half weeks later and take another bunch of images. Now you have two almost identical images of the galaxies, but with a time gap just long enough to allow a new supernova to appear."

"Everything had to happen like clockwork, and anytime the night was cloudy, you'd have to scramble to cover that time another night someplace else," he says.

The researchers developed a special computer program "to hunt through thousands of specks of light to find a new speck that wasn't there before," that is, looking for a new supernova. Then, using a spectrograph, they analyzed the light waves to determine whether the supernova was a Type Ia, the type they needed to study. Finally, they ran a series of observations following the supernova, obtaining images four to six more times as it brightened, then faded, which told them how bright it was at its peak.

"When we started the project, I thought we were just going out and doing a simple measurement of the brightness of exploding stars, and finding out whether the universe was going to end," he says. "It turned out that what we discovered was a huge surprise. We have been comparing it to throwing an apple up in the air, and finding that it doesn't fall back to earth, but instead blasts off into outer space, mysteriously moving faster and faster."

-- Marlene Cimons, National Science Foundation
Investigators
Saul Perlmutter
Related Institutions/Organizations
University of California-Berkeley

Tuesday, December 31, 2013

EPA'S CRIMINAL ENFORCEMENT PROGRAM OVERVIEW

FROM:  U.S. ENVIRONMENTAL AGENCY 
Criminal Enforcement Overview

EPA’s criminal enforcement program pursues individual and corporate defendants who have committed serious environmental crimes by providing:

Federal, state and local prosecutors with the evidence needed to prosecute environmental crimes.

Environmental forensic analyses and technical evaluations for both civil and criminal enforcement.

Computer evidence retrieval and evaluation.

Expert legal advice and counsel to EPA, U.S. Attorneys and the Department of Justice.

EPA's criminal enforcement program was established in 1982 and was granted full law enforcement authority by Congress in 1988. Today the program has more than 350 specially trained investigators, chemists, engineers, technicians, lawyers, and support staff.  From that number EPA has:

200 fully authorized federal law enforcement agents.

70 forensic scientists and technicians.

45 attorneys who specialize in environmental crimes enforcement.

Monday, August 26, 2013

NEW GAMMA-RAY OBSERVATORY HAS BEGUN THE STUDY OF THE ENERGETIC UNIVERSE

FROM:  LOS ALAMOS NATIONAL LABORATORY 
New Gamma-Ray Observatory Begins Operations at Sierra Negra Volcano In The State Of Puebla, Mexico

New Site to Observe Supernovas and Supermassive Black Holes

LOS ALAMOS, N.M., August 21, 2013—The High-Altitude Water Cherenkov (HAWC) Gamma Ray Observatory has begun formal operations at its site in Mexico. HAWC is designed to study the origin of very high-energy cosmic rays and observe the most energetic objects in the known universe. This extraordinary observatory, using a unique detection technique that differs from the classical astronomical design of mirrors, lenses, and antennae, is a significant boost to international scientific and technical knowledge.

“The HAWC observatory will search for signals from dark matter and to study some of the most extreme objects in the universe, such as supermassive black holes and exploding stars,” said Brenda Dingus, principal investigator and a research fellow at Los Alamos National Laboratory. Dingus is a Fellow of the American Physical Society, and in 2000 was a recipient of the Presidential Early Career Award for Scientists and Engineers.

HAWC is located at an altitude of 4100 meters on the slope of the volcanoes Sierra Negra and Pico de Orizaba at the border between the states of Puebla and Veracruz. The observatory, which is still under construction, uses an array of Cherenkov detectors to observe high-energy cosmic rays and gamma rays. Currently 100 out of 300 Cherenkov detectors are deployed and taking data. Each Cherenkov detector consists of 180,000 liters of extra-pure water stored inside an enormous tank (5 meters high and 7.3 meters in diameter) with four highly sensitive light sensors fixed to the bottom of the tank.

“Los Alamos has a long history of working in this field and built the predecessor to the HAWC observatory, called Milagro, located at the Los Alamos site in New Mexico,” Dingus said.

HAWC 15 Times More Sensitive Than Predecessor

“HAWC will be more than 15 times more sensitive than Milagro was, and it will detect many new sources of high-energy photons. Los Alamos also studies these high-energy phenomena through complex computer simulations to understand the physical mechanisms that accelerate particles to energies millions of times greater than man-made accelerators,” Dingus said.

The construction and operation of HAWC has been made possible by the financial support of several Mexican institutions such as the Consejo Nacional de Ciencia y Tecnología (CONACYT), the Universidad Nacional Autónoma de México (UNAM), and the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). Funding has also been provided by the United States through the National Science Foundation (NSF), the Department of Energy (DOE) Office of Science, the Los Alamos National Laboratory (LANL), and the University of Maryland. The University of Maryland is the managing institute of the project overall.

The HAWC array, operating with 100 Cherenkov detectors since August 1 and growing each week, will be sensitive to high-energy particles and radiation between 100 GeV and 100 TeV, energy equivalent to a billion times the energy of visible light. For more information online see http://www.hawc-observatory.org/.

In 2009, HAWC was identified as the Mexican astronomical project with the highest expected impact on high-energy astrophysics. Shortly thereafter a test array with three Cherenkov detectors was installed at the volcano Sierra Negra and successfully observed cosmic rays and gamma rays. Following these early tests, a prototype array of seven Cherenkov detectors was built in 2009 to test the tank design, simulate real data-taking, and study the logistics of deploying a large-scale observatory in this remote location. In 2012, the first 30 of 300 HAWC detectors were deployed, and since that time have been operated nearly continuously. The 30-detector stage of HAWC permitted calibration of the observatory via the observation of the shadow of the moon as it blocked cosmic rays. (http://1.usa.gov/14jjT8w)

Today, the scientific team of HAWC will formally begin observations of the most violent phenomena in the known universe, such as supernovae explosions and the evolution of supermassive black holes.

Image captions:

Figure 1: Artist’s conception of a black hole in the center of a distant galaxy emitting gamma rays, one of which reaches the Earth. Upon entering the terrestrial atmosphere, the gamma ray will produce a cascade of energetic particles that travels to detectors on the ground. Credit: Aurore Simonnet, Sonoma State University.

Figure 2. Diagram of a HAWC Cherenkov detector, with a person shown for scale. Inside the Cherenkov detector, a high-energy charged particle (red line) produces Cherenkov light (green lines) as it moves from top to bottom through the tank. The Cherenkov light is recorded by four highly sensitive photo-sensors placed at the bottom of the Cherenkov detector. By combining measurements from many tanks the properties of the original gamma ray or cosmic ray can be inferred.

Figure 3. Image of an event produced by particle cascade in the HAWC observatory. The larger circles represent each Cherenkov detector in HAWC, each contains 4 photo-sensors represented in the figure as smaller circles. The color of each small circle or photo-sensor represents the arrival time of the particle cascade to each sensor. This is one of the first images recorded by HAWC since the beginning of operations. In particular, this cascade arrived from the upper left to the bottom right and its center hit HAWC at the “X” mark. The time scale is given in the lower scale in nanometers.

Figure 4. The HAWC Observatory taken in August 2013 from the summit of Sierra Negra. The image has been digitally altered to show HAWC as it will appear when construction is complete in 2014. The 111 Cherenkov detectors currently installed (100 Cherenkov detectors in operation) are colored white and located in the upper right quadrant of the array.

Background: The Most Energetic Particles in the Known Universe

Gamma rays (electromagnetic radiation of very high frequency) and cosmic rays (subatomic particles of very high energy) are products of the most energetic and cataclysmic events in the known universe. These phenomena include the collisions of two neutron stars, the explosions of supernovae, binary systems of stars with stellar accretion, and active gal actic nuclei which host black holes millions of times more massive than the sun.

When high-energy cosmic rays and gamma rays reach the Earth, they interact with air molecules in the upper atmosphere. Gamma rays, for example, are converted into pairs of charged matter and anti-matter particles (mainly electrons and positrons). These particles rapidly interact with other air molecules, producing additional gamma rays of reduced energy, which then create further charged particle pairs. This chain reaction proceeds until a large cascade of particles and radiation reaches ground level, where it can be recorded in the HAWC detectors.

When the charged particle cascade from an extra-terrestrial gamma ray passes through a Cherenkov detector, its particles are traveling faster than the speed of light in water. The resulting effect is similar to the shock wave produced in the atmosphere by a supersonic airplane (a "sonic boom"), but instead of producing sound the particles produce a visible cone of light. The flash of light, called Cherenkov radiation, is measured by the light sensor fixed to the bottom of each detector in HAWC. By combining the light signal observed in many tanks with fast electronics and high precision computing equipment, it is possible for scientists to determine the time of arrival, energy, and direction of the original extraterrestrial gamma ray or cosmic ray.

Saturday, March 9, 2013

THE MISSILE AND SPACE INTELLIGENCE CENTER

GTR-18 surface-to-air missile simulators are fired at incoming aircraft during nighttime warfare training at the Yodaville close air support range near Marine Corps Air Station Yuma, Ariz., April 11, 2011. The Defense Intelligence Agency's Missile and Space Intelligence Center helps to protect U.S. forces from similar real weapons. U.S. Marine Corps photo by Cpl. Benjamin R. Reynolds
FROM: U.S. DEPARTMENT OF DEFENSE
Missile, Space Intelligence Center Saves Warfighter Lives
By Cheryl Pellerin
American Forces Press Service

WASHINGTON, March 8, 2013 - Engineers, scientists and analysts of the Defense Intelligence Agency's Missile and Space Intelligence Center provide high-confidence assessments of foreign missile and space systems and other critical intelligence products that help to keep warfighters from harm

Spread out over some of the 38,000 acres of the Army's Redstone Arsenal in the Appalachian highlands of northern Alabama are the laboratories, high-performance computing operations, test areas and hardware storage spaces that make up MSIC's vast engineering complex.

"The work itself is pretty detailed and geeky," MSIC Director Pamela McCue explained during an interview with American Forces Press Service. "We're a bunch of engineers and scientists, and by nature we love to figure out how things work."

McCue, an electrical engineer, said the work involves looking at all sources of intelligence and figuring out the characteristics, performance and operations of threat weapons, including surface-to-air missiles, anti-tank guided missiles, ground-based anti-satellite systems and short-range ballistic missiles.

Service members who conduct operations anywhere in the world are likely to encounter a variety of weapons, McCue said.

"Our job is to understand the threat weapons and push intelligence to the military so they will be prepared," she added. "Hopefully, we can do it so our service [members] won't even encounter the threat weapons, but if they do, we want them always to come out on top."

MSIC engineers and scientists focus on how a weapon works, how well it works, and how it's vulnerable or how it can be defeated, she said. Air and missile defense is a key mission.

"These are surface-to-air missiles primarily that fire at our aircraft, ... so anywhere that we have an air operation going, we are likely to face these kinds of systems," McCue noted.

The missiles range from air defense systems that a person can carry and fire from the shoulder to long-range air defense systems that can engage targets over hundreds of miles. The director said millions of "man-portable" systems are in use around the world.

With the knowledge its scientists and engineers gain, MSIC works with those in the services who design air survivability equipment, the director said, "so if you're carrying that on an aircraft, it will detect that a missile has been launched against it, and it will take action so the missile, hopefully, will not hit the aircraft.

"It can do that either with some kind of countermeasure," she continued, "usually a laser-based countermeasure, or perhaps even [by] dropping flares, which are electro-optical infrared devices [designed to] distract the missile and pull it off course. These are techniques that we can equip our military aircraft with -- and especially our helicopters, which have to operate in harm's way -- so even if they are engaged, they won't be hit."

Another important area for MSIC includes ground-based weapons that fire missiles or directed energy at platforms in space. These include anti-satellite missiles and directed-energy weapons.

"We in the United States haven't had a lot of [directed-energy weapons] programs for a while, [but] others around the world are still developing directed-energy weapons -- Russia and China are the two big ones," she said.

Very-high-energy weapons include laser systems, she added, and such weapons either would damage sensors on airplanes or satellites, or as technology evolves, physically destroy a platform in air or space.

The other important mission area for MSIC involves short-range ballistic missiles -- those that can engage targets from tens of miles out to 600 miles out.

"These systems are important because they're the weapon of choice for a lot of [nations] to reach beyond their borders, ... and they can be fitted to carry weapons of mass destruction, so they're a big concern for us and our allies," McCue said. "They're certainly a big player in the Middle East and North Korea."

Today, MSIC helps to defend against ballistic missiles on the same ground where, in 1950, German rocket developer Wernher von Braun and his team of top rocket scientists began working with the Army to develop the Jupiter ballistic missile and others.

The work was done as part of the Army Ballistic Missile Agency, which von Braun headed, and McCue said the organization had a small intelligence cell that was "taking a look at what was going on around the world in similar developments."

MISC began then as an Army research and development center, the director added, and in the 1990s, it became part of the Defense Intelligence Agency.

"We've had some of our missions since the very first days, like looking at those threat missile developments to compare them to what we were doing on this side," McCue said. "We picked up additional missions as weapons evolved and new things came online, like the ground-based anti-satellite mission."

In the beginning, the weapons were pretty basic, she said. "For instance, a surface-to-air missile would be capable of tracking a single aircraft at a time," she explained. "It would have a very tightly controlled process for controlling the missile to the target, and it would be very straightforward."

Now, the director said, there's a lot more flexibility.

"On the surface-to-air missile side, you have systems that can track many targets at one time and send many missiles to different targets at the same time," she added, and on the ballistic-missile side, a simple ballistic trajectory may be replaced by extreme maneuvers and countermeasures.

"A lot more complexity in the weapons has come from having more capability, more technology and more computers," the director observed.

Computers have boosted capability on the analysis side, McCue said. "It makes the weapon systems harder to figure out," she said, "but it makes our analysis a little easier and more capable."

The center also has put more emphasis on command and control, as the processes and communications surrounding the launch of a rocket or missile become more computer-driven, she said.

MSIC now has fewer people than it did during the Cold War. But amid the geopolitical instability of much of the world today, MSIC's scientists, engineers and analysts have many more kinds of weapons to deal with. Computer power helps keep the pace, along with a good priority system, McCue said.

"We don't have more people, but we do what I like to call 'risk management,'" the director said. "Every weapon system out there in the world doesn't have an equally high probability of being in an engagement at any given time, so we're constantly assessing priorities and putting the resources we have on the most important weapons, knowing that we can't cover everything."

Over time, major developments in technology could drive changes in MSIC's work, but McCue said she believes being an engineering organization gives MSIC an advantage.

"We tend to keep up with technology, because we use it in our analysis techniques. The folks in the ... labs we work with and the national labs across the country also keep up with technologies, and we're well-linked there," she said. "So ... we have the right mindset, and we are following the technology as a matter of course. The trick is anticipating how that might play into threat weapons."

Technologically, she added, one game-changer could involve people who do unexpected things with weapons, driven by conflicts such as the unrest in Syria or North Korea's use of missiles.

Along with keeping up with evolving technology, working with partners is an important aspect of the work at MSIC these days.

"We are very integrated into the whole intelligence system," the director said, adding that MSIC also works closely with the services and with U.S. allies and partners.

Each service has aircraft they have to fly, she added, "so they have to worry about surface-to-air missiles, [and] they're all what we call customers of ours. We make sure we understand what they need [and] we understand what kind of intelligence they need to put the right things on their military systems, ... and we push intelligence to them in the right form."

Where international partners are concerned, McCue said, "with virtually every partner that the United States has, we work with our counterparts in those countries."

The budget problems plaguing the nation and the Defense Department present a challenge that McCue said the center's scientists and engineers will have to tackle.

"In my observation over the years," she said, "there's a lot of innovation that can come from tight times -- when you're really focused on getting the job done and you've got to figure out some way to do it. We're adaptive and we're flexible, and we're going to keep putting those priorities up there and making sure we get the important things done."

Monday, April 30, 2012

SCIENCE AND THE INTERNATIONAL SECURITY AND ARMS CONTROL EQUATION


FROM:  U.S STATE DEPARTMENT
Science, Scientists, and International Security
Remarks Rose Gottemoeller
Acting Under Secretary for Arms Control and International Security Committee on International Security and Arms Control, National Academy of Sciences Annual Meeting
Washington, DC
April 29, 2012
Thank you so much for having me today. I am so pleased to be here at your grand reopening. The building looks beautiful and I am so glad to have you so close by again. As you have heard, I am now the Acting Under Secretary for Arms Control and International Security, as well as the Assistant Secretary for Arms Control, Verification and Compliance. I think I win the prize for the longest title in Washington.
While wearing my various hats, I spend a lot of time thinking about the application of science and technology to arms control and international security. As we watch the successful implementation of the New START Treaty, we are now thinking about the next steps.

Negotiators worked hard to find innovative new mechanisms to aid in the verification of the New START Treaty and the results of that work are already evident. Our experience so far is demonstrating that the New START Treaty’s verification regime works, and will help to push the door open to new types of inspections. Such inspections will be crucial to any future nuclear reduction plans.

And there is no doubt that we are facing new challenges, such as monitoring smaller and smaller units of account, e.g. warheads, or items that are inherently dual use in chemistry or biology.

Nowadays, we verify that countries are fulfilling their arms control treaty obligations through a combination of information exchange, notifications of weapon status, on-site inspections, and National Technical Means (NTM). When these elements work together we have an effective verification regime.

Ambassador Paul Nitze’s definition for effective verification, devised several decades ago, still stands – “if the other side moves beyond the limits of the treaty in any militarily significant way, we would be able to detect such violations in time to respond effectively and thereby deny the other side the benefit of the violation.”

That definition continues to be the benchmark for verifying compliance; but the world is changing, as is the nature of what we need to monitor and verify.

For example, if we are looking for ways to design a verifiable treaty that regulates the number of non-strategic nuclear weapons, we come across a problem we have not dealt with before: tactical weapons are small, easy to hide, and hard for an inspector to inventory; what is worse, we don’t all have the same definition of a non-strategic weapon.
If we move beyond looking at non-strategic nuclear weapons to examine overall reductions to our nuclear forces, we need to take a long, hard look at the entire nuclear enterprise, from production to deployment and storage, and finally to dismantlement, and identify greater opportunities to create novel monitoring regimes that bring us closer to the goal of that President Obama has set of a world without nuclear weapons.
We need to find new signatures that are measurable and help us to verify treaty obligations, while not divulging sensitive information that may compromise mutual security and deterrence. After all, we will be accepting such obligations for our nuclear weapons, too. In a treaty setting, all obligations will be totally reciprocal.
As we move forward towards an approach to nuclear monitoring that looks at the entire cradle to grave lifecycle of warheads, the dichotomy between controls on fissile materials and strategic arms control disappears. Previously, one set of experts might consider strategic nuclear missiles, another might analyze only naval nuclear reactors, and a third group might analyze fissile material. Eventually, we will need to merge the thinking in all of these diverse areas.

We also need to look at ways to expand the applications of existing agreements. For example, we are exploring opportunities to capitalize on the success of the Open Skies Treaty verification regime. For those of you unfamiliar with the Treaty, it establishes a regime of unarmed aerial observation flights over the territories of its signatories. Open Skies is one of the most wide-ranging international arms control efforts to promote openness and transparency in military forces and activities.

New ideas for the Open Skies Treaty involve both the possibility of applying the current regime to a wider array of treaty concerns, and the design of possible new cooperative aerial reconnaissance regimes that might be included to support verification of future agreements. We are also looking at possible novel applications for the Open Skies infrastructure. One example would be in the area of disaster relief.

Further, while we spend a lot of time focusing on nuclear weapons, the other weapons of mass destruction—particularly biological weapons—pose even greater challenges for arms control policy, because they are inherently dual use assets and, thus, difficult to disentangle from normal industrial or commercial processes.

Here, too, we need creative thinking about how to facilitate transparency in the biotech sector without compromising sensitive or proprietary information. Another problem with biotech transparency is that findings are potentially easy to misinterpret. There are legitimate reasons to study many pathogens, as we will discuss further on this panel. The risk of opening the US biotech industry to false accusations is a real concern, as is the inherent difficulty of unambiguous detection of foreign offensive BW activity. We need to be creative in our thinking here, as so far we have concluded simply that meaningful monitoring of biological activities that can clearly distinguish peaceful uses from weapons is not possible. We hope that some clever team will prove us wrong.

There are similar concerns about chemical weapons in the wake of advances in science and technology and the chemical industry. A modern chemical weapons production facility may look exactly like a typical civilian chemical production facility. A country could use the same facilities for both legitimate and weapon purposes with a relatively simple “swap out” of piping and equipment. Unless you happen to detect the effluent while they are processing a chemical weapon batch, it is possible you would not know what is being produced.

To help meet all these new challenges, a question that I’ve been asking myself, my staff and experts around the world is: what are some new tools and technologies that we could incorporate into arms control verification and monitoring for all weapons of mass destruction? I am particularly interested in how we can use the astonishing advancements in information technologies over the past decades, and how they can aid in the verification of arms control treaties and agreements.
Right now we are in the brainstorming stage, and I have been particularly keen to speak to young people about these challenges. But I have also been eager to speak to the broad scientific community, bringing these ideas to our national laboratories and last year, before the JASONs. I greatly appreciate this opportunity to speak to the NAS. It is people like you who will help us turn these ideas into policy.

Our new reality is a smaller, increasingly-networked world where the average citizen connects to other citizens in cyberspace hundreds of times each day. They exchange and share ideas on a wide variety of topics, why not put this vast problem solving entity to good use?

New concepts, I recognize, are not invented overnight, and we don’t understand the full range of possibilities inherent in the information age. Today, any event, anywhere on the planet, has the potential to be broadcast globally in mere seconds. The implications for arms control and verification are interesting. It is harder to hide things nowadays. When it is harder to hide things, it is easier to be caught. The neighborhood gaze is a powerful tool.

Open source information technologies improve arms control verification in at least two ways: either as a way of generating new information, or as analysis of information that already is out there.

The DARPA Red Balloon Challenge is an example of the first. It demonstrated the enormous potential of social networking and also demonstrated how incentives can motivate large populations to work toward a common goal. Applying such ideas to arms control, a country could, for example, establish its bona fides in a deep nuclear reduction environment by opening itself to a verification challenge.

A technique like this—I call it a “public verification challenge”—might be especially valuable as we move to lower and lower numbers of nuclear weapons. Governments, in that case, will have an interest in proving that they are meeting their reduction obligations, and may want to engage their publics in helping them to make the case. It will then be incumbent on all of us to ensure that they cannot spoof or manipulate the verification challenges that they devise.

This kind of public verification challenge would augment standard international safeguards or verification of a country’s nuclear declaration. We have to bear in mind that there could be significant limitations based on the freedoms available to the citizens of any given country —an issue to tackle in thinking through this problem.

The Information Age is also creating a greater talent pool of individuals. Garage tinkerers, skunk works scientists, technologists and gadget entrepreneurs can reach a broader, diverse market for their products and services. These private citizens can develop web-based applications for any touch pad communication device. This “crowd sourcing” lets everyday people solve problems by getting innovative ideas out of their heads and onto the shelves.

The DOD, through DARPA, is now using crowd source competitions for the development of drones. We believe that this is also an approach that could work for arms control and nonproliferation verification, both technologies and concepts.

Open source technology could be useful in the hands of inspectors. Smart Phone and tablet apps could be created for the express purpose of aiding in the verification and monitoring process. For example, by having all safeguards and verification sensors in an inspected facility wirelessly connected to an inspector’s iPad, he or she could note anomalies and flag specific items for closer inspections, as well as compare readings in real time and interpret them in context. Some of this is already happening on an ad hoc basis.
My Bureau intends to pursue such ideas through competitions, posing challenge questions with arms control applications to the information community.

Through our Key Verification Assets Fund (V Fund) Program, we are seeking ambitious, innovative research proposals to address requirements outlined in an unclassified Verification Technology Research and Development Needs Document. This is the first time that our “Needs Document”, as we call it, has been available in unclassified form. We are inviting researchers and project managers to submit white papers with ideas for sustaining, researching, developing, or acquiring technologies relating to the verification of chemical, biological, nuclear and missiles arms control, nonproliferation, and disarmament agreements or commitments.

This is not just a paper exercise. Congress created the V Fund so that we could provide "seed money" to encourage the development of new technologies, or to adapt existing projects to the needs of arms control verification. We intend to use the resource well.
You can find more information by going to www.state.gov/t/avc/vtt. We look forward to seeing your ideas.

In the end, the goal of using emerging technologies and social networks should be to augment our existing arms control verification capabilities, and we will need your help to think about how it can be done. For example, could the CTBTO’s International Monitoring System’s ability to monitor for nuclear tests be supplemented by social networks? Could new information technologies help us to monitor for the cheating scenarios that concern us – like the ones involving very small nuclear explosions? This is a timely consideration. Your organization just published a comprehensive study on the verifiability of the CTBT, and we at State thank everyone who was involved in the hard work of producing that study, including Micah Lowenthal, Ben Rusek and two of my esteemed fellow panelists – Raymond Jeanloz and Dick Garwin.

Going forward, it is only with the ideas from inside and outside the government that we will find better tools to mine, fuse and analyze both classified and unclassified data, in order to compensate for situations where on-site inspection and/or national technical means are unavailable or need to be supplemented.

These are exciting challenges and I look forward to working with you to tackle them.
Thank you.




Search This Blog

Translate

White House.gov Press Office Feed