Showing posts with label SATURN'S RINGS. Show all posts
Showing posts with label SATURN'S RINGS. Show all posts

Thursday, March 19, 2015

CASSINI LOOKS AT SATURN'S RING STRUCTURE

FROM:  NASA 


From afar, Saturn's rings look like a solid, homogenous disk of material. But upon closer examination from Cassini, we see that there are varied structures in the rings at almost every scale imaginable. Structures in the rings can be caused by many things, but often times Saturn's many moons are the culprits. The dark gaps near the left edge of the A ring (the broad, outermost ring here) are caused by the moons (Pan and Daphnis) embedded in the gaps, while the wider Cassini division (dark area between the B ring and A ring here) is created by a resonance with the medium-sized moon Mimas (which orbits well outside the rings). Prometheus is seen orbiting just outside the A ring in the lower left quadrant of this image; the F ring can be faintly seen to the left of Prometheus. This view looks toward the sunlit side of the rings from about 15 degrees above the ringplane. The image was taken in red light with the Cassini spacecraft wide-angle camera on Jan. 8, 2015. The view was obtained at a distance of approximately 566,000 miles (911,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 37 degrees. Image scale is 34 miles (54 kilometers) per pixel. The Cassini mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.  Credit: NASA/JPL-Caltech/Space Science Institute.

Wednesday, January 22, 2014

SATURN'S RINGS STUDIED WITH SPECIAL LIGHT FILTER

FROM:  NASA

Although it may look to our eyes like other images of the rings, this infrared image of Saturn's rings was taken with a special filter that will only admit light polarized in one direction. Scientists can use these images to learn more about the nature of the particles that make up Saturn's rings. The bright spot in the rings is the "opposition surge" where the Sun-Ring-Spacecraft angle passes through zero degrees. Ring scientists can also use the size and magnitude of this bright spot to learn more about the surface properties of the ring particles. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on Aug. 18, 2013 using a spectral filter sensitive to wavelengths of near-infrared light centered at 705 nanometers. The view was acquired at a distance of approximately 712,000 miles (1.1 million kilometers) from Saturn and at a Sun-rings-spacecraft, or phase, angle of 7 degrees. Image scale is 43 miles (68 kilometers) per pixel.  Image Credit-NASA-JPL-Caltech-Space Science Institute.

Monday, October 21, 2013

PORTRAIT OF SATURN LOOKING DOWN ON RINGS

FROM:  NASA 

This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on Oct. 10, 2013. It was made by amateur image processor and Cassini fan Gordan Ugarkovic. This image has not been geometrically corrected for shifts in the spacecraft perspective and still has some camera artifacts.The mosaic was created from 12 image footprints with red, blue and green filters from Cassini's imaging science subsystem. Ugarkovic used full color sets for 11 of the footprints and red and blue images for one footprint. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

Wednesday, December 5, 2012

TINY TETHYS OF SATURN



FROM: NASA
Tethys may not be tiny by normal standards, but when it is captured alongside Saturn, it can't help but seem pretty small.

Even Saturn's rings appear to dwarf Tethys (660 miles, or 1,062 kilometers across), which is in the upper left of the image, although scientists believe the moon to be many times more massive than the entire ring system combined. This view looks toward the unilluminated side of the rings from about 18 degrees below the ringplane. The image was taken in green light with the Cassini spacecraft wide-angle camera on Aug. 19, 2012.

The view was acquired at a distance of approximately 1.5 million miles (2.4 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 63 degrees. Image scale is 86 miles (138 kilometers) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

Image credit-NASA-JPL-Caltech-Space Science Institute

Tuesday, April 24, 2012

CASSINI SPACECRAFT SEES NEW OBJECTS BLAZING TRAILS IN SATURN RING


FROM:  NASA
WASHINGTON -- Scientists working with images from NASA's Cassini
spacecraft have discovered strange, half-mile-sized objects punching
through one of Saturn's rings and leaving glittering trails behind
them. The results will be presented tomorrow at the European
Geosciences Union meeting in Vienna, Austria.

The penetration occurred in the outermost of Saturn's main rings,
called the F ring, which has a circumference of 550,000 miles
(881,000 kilometers). Scientists are calling the trails in the F ring
"mini-jets." Cassini scientists combed through 20,000 images and
found 500 examples of these rogues during the seven years Cassini has
been at Saturn.

"Beyond just showing us the strange beauty of the F ring, Cassini's
studies of this ring help us understand the activity that occurs when
solar systems evolve out of dusty disks that are similar to, but
obviously much grander than, the disk we see around Saturn," said
Linda Spilker, Cassini project scientist at NASA's Jet Propulsion
Laboratory (JPL) in Pasadena, Calif.

Scientists have known relatively large objects can create channels,
ripples and snowballs, or clumps of icy material, in the F ring.
However, scientists did not know what happened to these snowballs
after they were created. Some were broken up by collisions or tidal
forces in their orbit around Saturn. Scientists now have evidence
some of the smaller ones survived, and their differing orbits mean
they go on to strike through the F ring on their own.

"I think the F ring is Saturn's weirdest ring, and these latest
Cassini results go to show how the F ring is even more dynamic than
we ever thought," said Carl Murray, a Cassini imaging team member
based at Queen Mary University of London, U.K. "These findings show
us that the F ring region is like a bustling zoo of objects from a
half-mile (0.8-kilometer) in size to moons like Prometheus a hundred
miles (160.9 kilometers) in size, creating a spectacular show."

These small objects appear to collide with the F ring at gentle speeds
about 4 mph (2 meters per second). The collisions drag glittering ice
particles out of the F ring with them, leaving a trail of 20-110
miles (40-180 kilometers) long.

In some cases, the objects traveled in packs, creating mini-jets that
looked exotic, like the barb of a harpoon. Other new images show
grand views of the entire F ring and the swirls and eddies from the
different kinds of objects moving through and around it.

Saturn's rings are comprised primarily of water ice. The chunks of ice
that make up the main rings spread out 85,000 miles (140,000
kilometers) from the center of Saturn. Scientists believe the rings'
average thickness is approximately 30 feet (10 meters).

The Cassini-Huygens mission is a cooperative project of NASA, the
European Space Agency and the Italian Space Agency. JPL manages the
mission for NASA's Science Mission Directorate in Washington. The
imaging team is based at the Space Science Institute in Boulder,
Colo.

Search This Blog

Translate

White House.gov Press Office Feed