Showing posts with label NASA. Show all posts
Showing posts with label NASA. Show all posts

Saturday, January 23, 2016

NASA, NOAA SATELLITES TRACK MASSIVE WINTER STORM

NASA and NOAA satellites are tracking the large winter storm that is expected to bring heavy snowfall to the U.S. mid-Atlantic region on Jan. 22 and 23. NASA-NOAA's Suomi NPP satellite snapped this image of the approaching blizzard around 2:35 a.m. EST on Jan. 22, 2016 using the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument's Day-Night band.  Image Credit: NOAA/NASA


Wednesday, June 10, 2015

SECRETARY KERRY'S STATEMENT ON 'CLIMATE CHANGE ADAPTATION AND RESILIENCE'

FROM:  U.S. STATE DEPARTMENT
Climate Change Adaptation and Resilience
Press Statement
John Kerry
Secretary of State
Washington, DC
June 9, 2015

Climate change poses a threat to every country on Earth, and we all need to do what we can to take advantage of the small window of opportunity we still have to stave off its worst, most disastrous impacts. But even as we take unprecedented steps to mitigate the climate threat, we also have to ensure our communities are prepared for the impacts we know are headed our way – and the impacts we are already seeing all over the world in the form of heat waves, floods, historic droughts, ocean acidification and more.

Thanks to President Obama’s Climate Action Plan, we’ve taken a number of important steps to increase the resilience of American communities. But as the President has always said, this is a global challenge, and we’re not going to get very far if we keep our efforts contained within our borders. That’s why the United States is deeply committed to helping the rest of the world – especially the poorest and most vulnerable nations – adapt to the changing climate as well.

As part of that commitment, last fall, President Obama announced his intention to create a private-public partnership to provide climate data and information to help promote resilient development worldwide. Today we formally launched the Climate Services for Resilient Development partnership, along with the government of the United Kingdom and our partners at the American Red Cross, the Asian Development Bank, Esri, Google, the Inter-American Development and the Skoll Global Threats Fund. In addition to the $34 million we and our partners are putting toward that new partnership, we also announced a series of individual steps we’re taking to make adapting to climate change easier around the globe – including, for example, the volunteer “climate resilience corps” that the Peace Corps and AmeriCorps will be launching in developing countries, and NASA’s release of the first-ever climate modeling system that breaks data down to the country level, which will enable countries to better target their individual adaptation planning efforts.

In the United States, we’ve developed some of the most advanced technologies and scientific expertise on climate change, and we want to make sure these tools are reaching those who need it the most. Each of the commitments announced today will make it easier for people to take control of their own futures and play an active role in helping to prepare their communities, their countries, and ultimately their planet for the changes ahead.

When it comes to confronting climate change, no country should be forced to go it alone – because no country can possibly address this threat alone. It will require all of us – every country, around the world, doing what it can to contribute to the solution. That understanding is at the core of the initiatives we are unveiling today, it’s what is driving our work toward an ambitious global agreement in Paris later this year, and it’s what will continue to guide our leadership in the fight against climate change in the months and years to come.

Saturday, January 24, 2015

SATELLITE VIEW OF GREELAND'S LEIDY GLACIER

FROM:  NASA   

Caption Credit:  Located in the northwest corner of Greenland, Leidy Glacier is fed by ice from the Academy Glacier (upstream and inland). As Leidy approaches the sea, it is diverted around the tip of an island that separates the Olriks Fjord to the south and Academy Cove to the north. The resulting crisscross pattern is simply the result of ice flowing along the path of least resistance.

This view of the region pictured above was acquired August 7, 2012, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. In April 2012, the feature caught the attention of a NASA pilot, who snapped this picture from the cockpit of a high-flying ER-2 aircraft during a research flight over the Greenland ice cap.

Thursday, November 21, 2013

MODIS IMAGE SHOWS LARGE ICEBERG SEPARATING FROM PINE ISLAND GLACIER IN ANTARCTICA

FROM:  NASA  
Pine Island Glacier 2013: Nov. 10

This MODIS image taken by NASA’s Aqua satellite on Nov. 10, 2013, shows an iceberg that was part of the Pine Island Glacier and is now separating from the Antarctica continent.  What appears to be a connection point on the top left portion of the iceberg is actually ice debris floating in the water.

The original rift that formed the iceberg was first observed in October 2011 but as the disconnection was not complete, the “birth” of the iceberg had not yet happened. It is believed the physical separation took place on or about July 10, 2013, however the iceberg persisted in the region, adjacent to the front of the glacier.
The iceberg is estimated to be 21 miles by 12 miles (35 km by 20 km) in size, roughly the size of Singapore. A team of scientists from Sheffield and Southampton universities will track it and try to predict its path using satellite data.  Image credit: NASA

Saturday, November 16, 2013

NATIONAL SCIENCE FOUNDATION EXPLAINS FORECASTING THE PATH OF A WILDFIRE

Credit:  NASA
FROM:  NATIONAL SCIENCE FOUNDATION 
Scientists nearing forecasts of long-lived wildfires' paths

Scientists have developed a new computer modeling technique that for the first time offers the promise of continually-updated daylong predictions of wildfire growth through the lifetimes of long-lived blazes.

The technique, devised by scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., and the University of Maryland, combines cutting-edge simulations of the interaction of weather and fire with newly available satellite observations of active wildfires.

The breakthrough is described in a paper published today in the online edition of the American Geophysical Union journal Geophysical Research Letters.

The National Science Foundation (NSF), which is NCAR's sponsor, funded the research, along with NASA and the Federal Emergency Management Agency.

"These scientists have developed a unique mechanism that will predict even a long-lived fire's lifecycle, which has the potential to save lives and property from large wildfires in the future," said Gannet Hallar, program director in NSF's Division of Atmospheric and Geospace Sciences, which supported the study.

Updated with new observations every 12 hours, the computer model forecasts critical details such as the extent of a blaze and changes in its behavior.

"With this technique, we believe it's possible to continually issue good forecasts throughout a fire's lifetime, even if it burns for weeks or months," said NCAR scientist Janice Coen, the lead paper author and model developer.

"This model, which combines interactive weather prediction and wildfire behavior, could greatly improve forecasting--particularly for large, intense wildfire events where the current prediction tools are weakest."

Firefighters use tools that can estimate the speed of the leading edge of a fire, but are too simple to capture critical effects caused by the complex interactions of fire and weather.

The researchers successfully tested the new technique by using it retrospectively on the 2012 Little Bear Fire in New Mexico, which burned for almost three weeks and destroyed more buildings than any other wildfire in the state's history.

To generate an accurate forecast of a wildfire, researchers need a computer model that can incorporate current data about the fire and simulate what it will do in the near future.

Over the last decade, Coen has developed a tool, known as the Coupled Atmosphere-Wildland Fire Environment (CAWFE) computer model, that connects how weather drives fires and, in turn, how fires create their own weather.

Using CAWFE, she successfully simulated the details of how large fires grow.

But without the most updated data about a fire's current state, CAWFE could not reliably produce a longer-term prediction of an ongoing fire.

That's because the accuracy of all fine-scale weather simulations declines significantly after a day or two, affecting the simulation of the blaze.

An accurate forecast would also need to include updates on the effects of firefighting and of such processes as spotting, in which embers from a fire are lofted in the fire plume and dropped ahead of a fire, igniting new flames.

Until now, it was not possible to update the model.

Satellite instruments offered only coarse observations of fires, providing images in which each pixel represented an area a little more than a half mile across.

These images might show several places burning, but could not distinguish the boundaries between burning and non-burning areas, except for the largest wildfires.

To solve the problem, Coen's co-author, Wilfrid Schroeder of the University of Maryland, produced higher-resolution fire detection data from a new satellite instrument, the Visible Infrared Imaging Radiometer Suite (VIIRS), jointly operated by NASA and the National Oceanic and Atmospheric Administration.

The new tool provides coverage of the entire globe at intervals of 12 hours or less, with pixels about 1,200 feet across. The higher resolution enabled the two researchers to outline the active fire perimeter in much greater detail.

Coen and Schroeder then fed the VIIRS fire observations into the CAWFE model. By restarting the model every 12 hours with the latest observations of the fire extent--a process known as cycling--they could accurately predict the course of the Little Bear Fire in 12- to 24-hour increments during five days of the historic blaze.

By continuing that way, it's possible to simulate even a very long-lived fire's entire lifetime, from ignition through extinction.

"The transformative event has been the arrival of this new satellite data," said Schroeder.

"The enhanced capability of the VIIRS data favors detection of newly ignited fires before they erupt into major conflagrations. The satellite data has tremendous potential to supplement fire management and decision support systems, sharpening the local, regional and continental monitoring of wildfires."

The researchers said that forecasts using the new technique could be particularly useful in anticipating sudden blowups and shifts in the direction of the flames, such as what happened when 19 firefighters perished in Arizona last summer.

In addition, they could enable decision makers to look at several newly ignited fires and determine which pose the greatest threat.

"Lives and homes are at stake and depend on these decisions," Coen said. "The interaction of fuels, terrain and changing weather is so complicated that even seasoned managers can't always anticipate rapidly changing conditions.

"Many people have resigned themselves to believing that wildfires are unpredictable. We're showing that's not true."

-NSF-

Monday, September 16, 2013

DHS AND NASA WORK TOGETHER TO SAVE VICTIMS OF DISASTER

FROM:  U.S. DEPARTMENT OF HOMELAND SECURITY
Detecting Heartbeats in Rubble: DHS and NASA Team up to Save Victims of Disasters

In June 2013, Urban Search and Rescue team tested the FINDER’s human-finding abilities at the Fairfax County Fire Department training center.

When natural disasters or man-made catastrophes topple buildings, search and rescue teams immediately set out to recover victims trapped beneath the wreckage. During these missions, time is imperative, and quickly detecting living victims greatly increases chances for rescue and survival.

A new radar-based technology named Finding Individuals for Disaster and Emergency Response (FINDER) has been developed by the Department of Homeland Security’s Science and Technology Directorate (S&T) and the National Aeronautics Space Administration’s Jet Propulsion Laboratory (JPL) to detect a human heartbeat buried beneath 30 feet of crushed materials, hidden behind 20 feet of solid concrete, and from a distance of 100 feet in open spaces. In the past several months, S&T and JPL have been testing and developing several FINDER prototypes. Last June, DHS and first responders used the prototype to conduct more than 65 test searches with two Urban Search and Rescue (US&R) teams: the Virginia Task Force One (VA-TF1) at the Fairfax County Fire Department training center and Virginia Task Force Two (VA-TF2) in Virginia Beach, Va.

“Testing proved successful in locating a VA-TF1 member buried in 30 feet of mixed concrete, rebar, and gravel rubble from a distance of over 30 feet,” said John Price, S&T program manager. “This capability will complement the current Urban Search and Rescue tools such as canines, listening devices, and video cameras to detect the presence of living victims in rubble.”

Saturday, August 24, 2013

U.S. EX-IM BANK APPROVES LOAN TO FIANCE SPACEX LAUNCH

FROM:  EXPORT-IMPORT BANK 
Ex-Im Bank Approves $105.4 Million Loan to Finance SpaceX Launch

Washington, D.C. – Continuing its support of the space industry in America, the Export-Import Bank of the United States (Ex-Im Bank) has authorized a $105.4 million loan to Space Communication Ltd. of Ramat Gan, Israel, to finance the Space Exploration Technologies (SpaceX) launch of the Amos-6 communications satellite, the purchase of American made-solar arrays, and insurance brokered by Marsh USA (Marsh)

The transaction is Ex-Im Bank’s third in support of a SpaceX launch, and it will support approximately 600 U.S. jobs, according to bank estimates derived from Departments of Commerce and Labor data and methodology. In June of 2013, Ex-Im Bank announced that it had approved financing for the launches of two satellites manufactured by Space Systems/Loral LLC, and in November of 2012 the Bank announced that it had approved financing for the launches of two Boeing-manufactured satellites.

“Ex-Im Bank is always ready to help the American space industry boost its international sales and export its products to important markets,” said Ex-Im Bank Chairman and President Fred P. Hochberg. “Our support of American launches and exports levels the playing field for U.S. companies and keeps highly-skilled, well-paying jobs on American soil.”

Satellite financing represents Ex-Im Bank’s most prominent stand-out sector in the Bank's newly transformed portfolio. Just three years ago, satellites accounted for only $50 million in authorizations per year. This year numbers as the third consecutive year in which Ex-Im Bank's satellite sector authorizations will have topped $1 billion.

Amos-6, a geosynchronous satellite, will replace Space Communication’s Amos-2 and cover markets in Central and Eastern Europe and the Middle East. The satellite will also provide pan-European coverage and broadband services in Europe and Africa.

The launch is scheduled for 2015.

Founded in 2002 and headquartered in Hawthorne, Calif., SpaceX designs, manufactures and launches rockets and spacecraft. It is the first private company to build, launch, and dock spacecraft at the International Space Station, a mission previously accomplished only by government space entities.

“We appreciate Ex-Im Bank’s support of both SpaceX and the U.S. space industry,” said Gwynne Shotwell, SpaceX president and chief operating officer. “With export financing for contracts like the AMOS-6 mission, Ex-Im Bank helps SpaceX compete successfully with international launch service providers, bringing overseas satellite launch business and high-tech jobs back to American soil.”

ATK Space Systems Inc., a participant in the transaction and a manufacturer of the solar arrays for the satellite, is a member of the ATK Aerospace Group. The company provides a broad portfolio of products and services that include integrated satellite bus systems, world-class multidisciplinary engineering services, and market-leading integrated thermal-control systems.

Founded in 1871, Marsh is a global leader in insurance brokering and risk management. The company has approximately 26,000 colleagues who collaborate to provide advice and transactional capabilities to clients in over 100 countries.

Tuesday, August 6, 2013

VAN ALLEN SPEED

FROM: LOS ALAMOS NATIONAL LABORATORY

Van Allen Probes Pinpoint Driver of Speeding Electrons


Research team solves decades-old mystery that threatens satellites


LOS ALAMOS, N.M., July 25, 2013—Researchers believe they have solved a lingering mystery about how electrons within Earth’s radiation belt can suddenly become energetic enough to kill orbiting satellites. Thanks to data gathered from an intrepid pair of NASA probes roaming the harsh space environment within the Van Allen radiation belts, scientists have identified an internal electron accelerator operating within the belts.

"For years we thought the Van Allen belts were pretty well behaved and changed slowly," said Geoffrey Reeves of Los Alamos National Laboratory’s Intelligence and Space Research Division. "With more measurements, however, we realized how quickly and unpredictably the radiation belts change, and now we have real evidence that the changes originate from within the belts themselves."

In a paper released today in Science Express, Reeves and colleagues from the University of New Hampshire, University of Colorado at Boulder, NASA Goddard Flight Center, Aerospace Corporation, University of California-Los Angeles, and University of Iowa, describe a mechanism by which electrons suddenly accelerate to fantastic speeds within the Van Allen belts— a pair of donut shaped zones of charged particles that surround Earth and occupy the inner region of our planet’s Magnetosphere.

Traveling at 99 percent the speed of light, the super-fast electrons are among the speediest particles naturally produced by Earth, and have energies so high that they can penetrate and destroy satellite components. The research paves the way for scientists to possibly predict hazardous space weather and allow satellite operators to potentially prepare for the ravages of sudden space storms.

The radiation belts, named after their discoverer, James Van Allen, are comprised of an outer region of extremely high-energy electrons, with an inner region of energetic protons and electrons. The belts have been studied extensively since the dawn of the Space Age, because the high-energy particles in the outer ring can cripple or disrupt spacecraft. Long-term observation of the belts have hinted that the belts can act as efficient and powerful particle accelerators; recent observations by the Van Allen Probes (formerly known as the Radiation Belt Storm Probes)—a pair of spacecraft launched in August 2012—now seem to confirm this.

On October 9, 2012, while flying through the radiation belts, the Van Allen Probes measured a sudden, nearly thousand-fold increase in the energy of electrons within the outer belt. The rapid increase came on the heels of a period of waning energies the week before. The October 9 event mimicked an observed, but poorly understood event measured in 1997 by another spacecraft. Ever since the 1997 event, scientists have pondered whether the increase in electron energy was the result of forces outside of the belts, a mechanism known as "radial acceleration," or from forces within the belts, known as "local acceleration." Data from the Van Allen Probes seems to put this question to rest.

Because the twin Van Allen Probes follow each other and cut through the belts at different times, researchers were able to see that the October 9 increase originated from within the heart of the belts, indicative of local acceleration. The data also showed that higher electron fluxes did not move from a region outside of the belts slowly toward our planet, a detail corroborated by other geosynchronous satellites located outside of the belts.

"In the October 9, 2012, event, all of the acceleration took place in about 12 hours," said Reeves, a space physicist and principal author of the Science paper. "With previous measurement, a satellite might have only been able to fly through such an event once and not get a chance to witness the changes actually happening."

The researchers are now trying to understand exactly how the acceleration took place. Right now, the team believes that electromagnetic radio waves somehow excite the electrons into a higher-energy state, much like a microwave oven excites and heats water molecules. Members of the team are looking hard at waves known as "Chorus Waves" that are often observed in the region of the belts where the local acceleration was strongest. Chorus Waves are a type of electromagnetic radio wave with frequencies within the range of human hearing. Chorus Waves provide a haunting cacophony like a flock of extraterrestrial birds.

"We don’t know whether it is Chorus Waves or some other type of electromagnetic wave that’s behind the electron acceleration we are seeing," said Reeves, "but the Van Allen Probes are also equipped with instruments that should help us figure that out as well. Each of these discoveries take us a step closer to the goal of forecasting these extreme space weather events and making space safer for satellites."



 
 


Tuesday, July 30, 2013

THE LITTLE ROVER BELOW



FROM:  NASA

NASA's Mars Science Laboratory rover Curiosity appears as a bluish dot near the lower right corner of this enhanced-color view from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter.  The rover's tracks are visible extending from the landing site, "Bradbury Landing," in the left half of the scene. Two bright, relatively blue spots surrounded by darker patches are where the Mars Science Laboratory spacecraft's landing jets cleared away reddish surface dust at the landing site. North is toward the top.  For scale, the two parallel lines of the wheel tracks are about 10 feet (3 meters) apart. HiRISE shot this image on June 27, 2013, when Curiosity was at an outcrop called "Shaler" in the "Glenelg" area of Gale Crater.  Subsequently the rover drove away from Glenelg toward the southwest. When HiRISE captured this view, the Mars Reconnaissance Orbiter was rolled for an eastward-looking angle rather than straight downward. The afternoon sun illuminated the scene from the western sky, so the lighting was nearly behind the camera. Specifically, the angle from sun to orbiter to rover was just 5.47 degrees. This geometry hides shadows and reveals subtle color variations. The image is one product from HiRISE observation ESP_032436_1755.  Other image products from this observation are available at http://www.uahirise.org/ESP_032436_1755 . HiRISE is one of six instruments on NASA's Mars Reconnaissance Orbiter. The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Science Laboratory projects for NASA's Science Mission Directorate, Washington. Image credit: NASA/JPL-Caltech/Univ. of Arizona › Related release.


Wednesday, July 10, 2013

ASTRONAUTS CHECK OUT ORION CREW MODULE


Stepping into the Orion Crew Module
NASA astronauts Cady Coleman and Ricky Arnold step into the Orion crew module hatch during a series of spacesuit check tests conducted on June 13, 2013 at the Space Vehicle Mockup Facility at the agency's Johnson Space Center in Houston.

The Orion crew module will serve as both transport and a home to astronauts during future long-duration missions to an asteroid, Mars and other destinations throughout our solar system.  Image-Credit- NASA-Bill Stafford

Saturday, May 4, 2013

THE X-51A WAVERIDER ACHIEVES MACH 5.1 OVER THE PACIFIC

 
The X-51A Waverider prepares to launch its historic fourth and final flight. The cruiser achieved Mach 5.1 traveling 230 nautical miles in just over six minutes, making this test the longest air-breathing hypersonic flight ever. U.S. Air Force photo/Bobbi Zapka.
FROM: U.S. AIR FORCE
X-51A Waverider achieves breakthrough in final flight
by Daryl Mayer
88th Air Base Wing Public Affairs

5/3/2013 - WRIGHT-PATTERSON AIR FORCE BASE, Ohio (AFNS) -- The final flight of the X-51A Waverider test program has accomplished a breakthrough in the development of flight reaching Mach 5.1 over the Pacific Ocean May 1.

"It was a full mission success," said Charlie Brink, the X-51A program manager for the Air Force Research Laboratory Aerospace Systems Directorate.

The cruiser traveled more than 230 nautical miles in just over six minutes over the Point Mugu Naval Air Warfare Center Sea Range, Calif. It was the longest of the four X-51A test flights and the longest air-breathing hypersonic flight ever.

"I believe all we have learned from the X-51A Waverider will serve as the bedrock for future hypersonics research and ultimately the practical application of hypersonic flight," Brink said.

The X-51A took off from the Air Force Test Center at Edwards AFB, Calif., under the wing of a B-52H Stratofortress. It was released at approximately 50,000 feet and accelerated to Mach 4.8 in about 26 seconds powered by a solid rocket booster. After separating from the booster, the cruiser's supersonic combustion ramjet, or scramjet, engine then lit and accelerated the aircraft to Mach 5.1 at 60,000 feet.

After exhausting its 240-second fuel supply, the vehicle continued to send back telemetry data until it splashed down into the ocean and was destroyed as designed. At impact, 370 seconds of data were collected from the experiment.

"This success is the result of a lot of hard work by an incredible team. The contributions of Boeing, Pratt and Whitney Rocketdyne, the 412th Test Wing at Edwards AFB, NASA Dryden and DARPA were all vital," Brink said.

This was the last of four test vehicles originally conceived when the $300 million technology demonstration program began in 2004. The program objective was to prove the viability of air-breathing, high-speed scramjet propulsion.

The X-51A is unique primarily due to its use of a hydrocarbon fuel in its scramjet engine. Other vehicles have achieved hypersonic, generally defined as speeds above Mach 5, flight with the use of hydrogen fuel. Without any moving parts, hydrocarbon fuel is injected into the scramjet's combustion chamber where it mixes with the air rushing through the chamber and is ignited in a process likened to lighting a match in a hurricane.

The use of logistically supportable hydrocarbon fuel is widely considered vital for the practical application of hypersonic flight.

As a technology demonstration program, there is no immediate successor to the X-51A program. However, the Air Force will continue hypersonic research and the successes of the X-51A will pay dividends to the High Speed Strike Weapon program currently in its early formation phase with AFRL.

Saturday, April 20, 2013

HABITALBE-ZONE EARTH-SIZE PLANETS CONTINUE TO BE DISCOVERED



Relative sizes of all of the habitable-zone planets discovered to date alongside Earth. Left to right: Kepler-22b, Kepler-69c, Kepler-62e, Kepler-62f and Earth (except for Earth, these are artists' renditions). Image credit: NASA Ames/JPL-Caltech.
FROM:  NASA

MOFFETT FIELD, Calif. -- NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the "habitable zone," the range of distance from a star where the surface temperature of an orbiting planet might be suitable for liquid water.

The Kepler-62 system has five planets; 62b, 62c, 62d, 62e and 62f. The Kepler-69 system has two planets; 69b and 69c. Kepler-62e, 62f and 69c are the super-Earth-sized planets.

Two of the newly discovered planets orbit a star smaller and cooler than the sun. Kepler-62f is only 40 percent larger than Earth, making it the exoplanet closest to the size of our planet known in the habitable zone of another star. Kepler-62f is likely to have a rocky composition. Kepler-62e, orbits on the inner edge of the habitable zone and is roughly 60 percent larger than Earth.

The third planet, Kepler-69c, is 70 percent larger than the size of Earth, and orbits in the habitable zone of a star similar to our sun. Astronomers are uncertain about the composition of Kepler-69c, but its orbit of 242 days around a sun-like star resembles that of our neighboring planet Venus.

Scientists do not know whether life could exist on the newfound planets, but their discovery signals we are another step closer to finding a world similar to Earth around a star like our sun.

"The Kepler spacecraft has certainly turned out to be a rock star of science," said John Grunsfeld, associate administrator of the Science Mission Directorate at NASA Headquarters in Washington. "The discovery of these rocky planets in the habitable zone brings us a bit closer to finding a place like home. It is only a matter of time before we know if the galaxy is home to a multitude of planets like Earth, or if we are a rarity."

The Kepler space telescope, which simultaneously and continuously measures the brightness of more than 150,000 stars, is NASA's first mission capable of detecting Earth-size planets around stars like our sun. Orbiting its star every 122 days, Kepler-62e was the first of these habitable zone planets identified. Kepler-62f, with an orbital period of 267 days, was later found by Eric Agol, associate professor of astronomy at the University of Washington and co-author of a paper on the discoveries published in the journal Science.

The size of Kepler-62f is now measured, but its mass and composition are not. However, based on previous studies of rocky exoplanets similar in size, scientists are able to estimate its mass by association.

"The detection and confirmation of planets is an enormously collaborative effort of talent and resources, and requires expertise from across the scientific community to produce these tremendous results," said William Borucki, Kepler science principal investigator at NASA's Ames Research Center at Moffett Field, Calif., and lead author of the Kepler-62 system paper in Science. "Kepler has brought a resurgence of astronomical discoveries and we are making excellent progress toward determining if planets like ours are the exception or the rule."

The two habitable zone worlds orbiting Kepler-62 have three companions in orbits closer to their star, two larger than the size of Earth and one about the size of Mars. Kepler-62b, Kepler-62c and Kepler-62d, orbit every five, 12, and 18 days, respectively, making them very hot and inhospitable for life as we know it.

The five planets of the Kepler-62 system orbit a star classified as a K2 dwarf, measuring just two-thirds the size of the sun and only one-fifth as bright. At seven billion years old, the star is somewhat older than the sun. It is about 1,200 light-years from Earth in the constellation Lyra.

A companion to Kepler-69c, known as Kepler-69b, is more than twice the size of Earth and whizzes around its star every 13 days. The Kepler-69 planets' host star belongs to the same class as our sun, called G-type. It is 93 percent the size of the sun and 80 percent as luminous and is located approximately 2,700 light-years from Earth in the constellation Cygnus.

"We only know of one star that hosts a planet with life, the sun. Finding a planet in the habitable zone around a star like our sun is a significant milestone toward finding truly Earth-like planets," said Thomas Barclay, Kepler scientist at the Bay Area Environmental Research Institute in Sonoma, Calif., and lead author of the Kepler-69 system discovery published in the Astrophysical Journal.

When a planet candidate transits, or passes in front of the star from the spacecraft's vantage point, a percentage of light from the star is blocked. The resulting dip in the brightness of the starlight reveals the transiting planet's size relative to its star. Using the transit method, Kepler has detected 2,740 candidates. Using various analysis techniques, ground telescopes and other space assets, 122 planets have been confirmed.

Early in the mission, the Kepler telescope primarily found large, gaseous giants in very close orbits of their stars. Known as "hot Jupiters," these are easier to detect due to their size and very short orbital periods. Earth would take three years to accomplish the three transits required to be accepted as a planet candidate. As Kepler continues to observe, transit signals of habitable zone planets the size of Earth orbiting stars like the sun will begin to emerge.

Ames is responsible for Kepler's ground system development, mission operations, and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery Mission and was funded by the agency's Science Mission Directorate.

For more information about the Kepler mission and to view the digital press kit, visit:

Wednesday, April 10, 2013

DUNE: AUSTRALIA




FROM: NASA
Great Sandy Desert, Australia


In northwest Australia, the Great Sandy Desert holds great geological interest as a zone of active sand dune movement. While a variety of dune forms appear across the region, this astronaut photograph features numerous linear dunes (about 25 meters high) separated in a roughly regular fashion (0.5 to 1.5 kilometers apart). The dunes are aligned to the prevailing winds that generated them, which typically blow from east to west. Where linear dunes converge, dune confluences point downwind. When you fly over such dune fields—either in an airplane or the International Space Station—the fire scars stand out. Where thin vegetation has been burned, the dunes appear red from the underlying sand; dunes appear darker where the vegetation remains.

Astronaut photograph ISS035-E-9454 was acquired on March 25, 2013, with a Nikon D3S digital camera using a 400 millimeter lens, and is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center. The image was taken by the Expedition 35 crew. It has been cropped and enhanced to improve contrast, and lens artifacts have been removed. Image Credit: NASA

Sunday, April 7, 2013

SATURN AND TITAN




FROM: NASA
Pioneer 11 Image of Saturn and Its Moon Titan

The Pioneer 11 spacecraft launched from Cape Canaveral forty years ago, on April 5, 1973. Pioneer 11's path through Saturn's outer rings took it within 21,000 km of the planet, where it discovered two new moons (almost smacking into one of them in September 1979) and a new "F" ring. The spacecraft also discovered and charted the magnetosphere, magnetic field and mapped the general structure of Saturn's interior. The spacecraft's instruments measured the heat radiation from Saturn's interior and found that its planet-sized moon, Titan, was too cold to support life.

This image from Pioneer 11 shows Saturn and its moon Titan. The irregularities in ring silhouette and shadow are due to technical anomalies in the preliminary data later corrected. At the time this image was taken, Pioneer was 2,846,000 km (1,768,422 miles) from Saturn. Image credit-NASA Ames



Search This Blog

Translate

White House.gov Press Office Feed