This still image was taken from a new NASA movie of the sun based on data from NASA's Solar Dynamics Observatory, or SDO, showing the wide range of wavelengths – invisible to the naked eye – that the telescope can view. SDO converts the wavelengths into an image humans can see, and the light is colorized into a rainbow of colors. Yellow light of 5800 Angstroms, for example, generally emanates from material of about 10,000 degrees F (5700 degrees C), which represents the surface of the sun. Extreme ultraviolet light of 94 Angstroms, which is typically colorized in green in SDO images, comes from atoms that are about 11 million degrees F (6,300,000 degrees C) and is a good wavelength for looking at solar flares, which can reach such high temperatures. By examining pictures of the sun in a variety of wavelengths – as is done not only by SDO, but also by NASA's Interface Region Imaging Spectrograph, NASA's Solar Terrestrial Relations Observatory and the European Space Agency/NASA Solar and Heliospheric Observatory -- scientists can track how particles and heat move through the sun's atmosphere. Jewel Box Sun Image Credit: NASA Goddard Space Flight Center
A PUBLICATION OF RANDOM U.S.GOVERNMENT PRESS RELEASES AND ARTICLES
Showing posts with label SDO. Show all posts
Showing posts with label SDO. Show all posts
Sunday, December 22, 2013
NASA RELEASES COLORFUL STILL IMAGE OF THE SUN
FROM: NASA
This still image was taken from a new NASA movie of the sun based on data from NASA's Solar Dynamics Observatory, or SDO, showing the wide range of wavelengths – invisible to the naked eye – that the telescope can view. SDO converts the wavelengths into an image humans can see, and the light is colorized into a rainbow of colors. Yellow light of 5800 Angstroms, for example, generally emanates from material of about 10,000 degrees F (5700 degrees C), which represents the surface of the sun. Extreme ultraviolet light of 94 Angstroms, which is typically colorized in green in SDO images, comes from atoms that are about 11 million degrees F (6,300,000 degrees C) and is a good wavelength for looking at solar flares, which can reach such high temperatures. By examining pictures of the sun in a variety of wavelengths – as is done not only by SDO, but also by NASA's Interface Region Imaging Spectrograph, NASA's Solar Terrestrial Relations Observatory and the European Space Agency/NASA Solar and Heliospheric Observatory -- scientists can track how particles and heat move through the sun's atmosphere. Jewel Box Sun Image Credit: NASA Goddard Space Flight Center
This still image was taken from a new NASA movie of the sun based on data from NASA's Solar Dynamics Observatory, or SDO, showing the wide range of wavelengths – invisible to the naked eye – that the telescope can view. SDO converts the wavelengths into an image humans can see, and the light is colorized into a rainbow of colors. Yellow light of 5800 Angstroms, for example, generally emanates from material of about 10,000 degrees F (5700 degrees C), which represents the surface of the sun. Extreme ultraviolet light of 94 Angstroms, which is typically colorized in green in SDO images, comes from atoms that are about 11 million degrees F (6,300,000 degrees C) and is a good wavelength for looking at solar flares, which can reach such high temperatures. By examining pictures of the sun in a variety of wavelengths – as is done not only by SDO, but also by NASA's Interface Region Imaging Spectrograph, NASA's Solar Terrestrial Relations Observatory and the European Space Agency/NASA Solar and Heliospheric Observatory -- scientists can track how particles and heat move through the sun's atmosphere. Jewel Box Sun Image Credit: NASA Goddard Space Flight Center
Sunday, December 9, 2012
THE SUN'S INNERMOST ATMOSPHERE REVEALED
FROM: NASA,
The Sun's Innermost Atmosphere
This combined image from Nov. 8-9, 2012, shows the sun's innermost atmosphere as seen by the Solar Dynamics Observatory (SDO) inside a larger image provided by the Solar and Heliospheric Observatory (SOHO). A coronal mass ejection can be seen traveling away from the sun in the upper right corner. Scientists can compare the images to correlate what's happening close to the sun with what happens further away.
Image credit: ESA/NASA
Subscribe to:
Posts (Atom)