Showing posts with label RED PLANET. Show all posts
Showing posts with label RED PLANET. Show all posts

Wednesday, October 2, 2013

WATER WORLD MARS

FROM:  LOS ALAMOS NATIONAL LABORATORY
Water for Future Mars Astronauts?

Diversity of Martian soils leaves Los Alamos scientists thirsty for more

LOS ALAMOS, N.M., Sept. 26, 2013—Within its first three months on Mars, NASA’s Curiosity Rover saw a surprising diversity of soils and sediments along a half-kilometer route that tell a complex story about the gradual desiccation of the Red Planet.

Perhaps most notable among findings from the ChemCam team is that all of the dust and fine soil contains small amounts of water.

“We made this discovery literally with the very first laser shot on the Red Planet,” said Roger Wiens, leader of the ChemCam instrument team. “Every single time we shot at dust we saw a significant hydrogen peak.”

In a series of five papers covering the rover’s top discoveries during its first three months on Mars that appear today in the journal Science, Los Alamos researchers using the rover’s ChemCam instrument team up with an international cadre of scientists affiliated with the CheMin, APXS, and SAM instruments to describe the planet’s seemingly once-volcanic and aquatic history.

Researchers believed the hydrogen seen in the dust was coming from water, a hypothesis that was later corroborated by Curiosity’s SAM instrument, which indicated that all of the soil encountered on Mars contains between 1.5 and 3 percent water. This quantity is enough to explain much of the near-equatorial hydrogen observed beginning in 2001 by Los Alamos’s neutron spectrometer on board the Mars Odyssey spacecraft.

ChemCam also showed that the soils consist of two distinct components. In addition to extremely fine-grained particles that seem to be representative of the ubiquitous Martian dust covering the entire planet’s surface like the fine film that collects on the undisturbed surfaces of a long-abandoned home, the ChemCam team discovered coarser-grained particles up to one millimeter in size that reflected the composition of local rocks. In essence, ChemCam observed the process of rocks being ground down to soil over time.

The ChemCam instrument—which vaporizes material with a high-powered laser and reads the resultant plasma with a spectrometer—has shown a similar composition to fine-grained dust characterized on other parts of the planet during previous Martian missions. ChemCam tested more than 100 targets in a location named Rocknest and found that the dust contained consistent amounts of water regardless of the sampling area.

What’s more, the Rover dug into the soils at Rocknest to provide scientists with the opportunity to sample the newly unearthed portion over the course of several Martian days. The instrument measured roughly the same tiny concentration of water (about 2 percent) in the surface soils as it did in the freshly uncovered soil, and the newly excavated area did not dry out over time—as would be expected if moist subsurface material were uncovered.

The water signature seen by Curiosity in the ubiquitous Martian dust may coincide with the tiny amount of ambient humidity in the planet’s arid atmosphere. Multiple observations indicate that the flowing water responsible for shaping and moving the rounded pebbles encountered in the vicinity of the rover landing area has long since been lost to space, though some of it may still exist deep below the surface of the planet at equatorial locations (water ice is known to exist near the surface at the poles).

Despite the seemingly small measurements of water in the Martian environment, the findings nevertheless are exciting.

“In principle it would be possible for future astronauts to heat the soil to derive water to sustain them,” said Wiens.

While at Rocknest, scientists were also able to test samples that had been characterized by ChemCam with two other instruments aboard the rover: CheMin, a miniaturized apparatus partially developed at Los Alamos that uses X-rays to determine the composition of materials; and SAM, a tiny oven that melts samples and identifies the composition of gases given off by them. The analyses by all three instruments indicate that Mars likely has a volcanic history that shaped the surface of the planet.

A fourth instrument, the Alpha Particle X-ray Spectrometer (APXS), provides additional insights into the volcanic diversity on Mars. APXS analyzed a rock called Jake Matijevic—named in honor of a deceased Jet Propulsion Laboratory Mars engineer—and found that it is one of the most Earth-like rocks yet seen on the Red Planet. The rock’s enrichment in sodium, giving it a feldspar-rich mineral content, makes it very similar to some rocks erupted on ocean islands on Earth. ChemCam contributed to the characterization of Jake_M.

The Curiosity Rover is scheduled to explore Mars for another year at least. In the coming months, Curiosity will travel to Mount Sharp, a towering peak nearly three miles in elevation. Mount Sharp appears to contain layers of sedimentary history dating back several billion years. These layers are like pages of a book that could teach researchers much about the geologic and climate history of the Red Planet.

Friday, November 2, 2012

NASA VIDEO: RED PLANET LANDING




Red Planet: Landing


Adam Steltzner, Mars Science Laboratory Entry, Descent and Landing Lead, guides viewers through the landing process for the NASA Mars rover Curiosity.

Thursday, September 13, 2012

DRY ICE FALLS LIKE SNOW ON MARS

MARS SOUTHERN POLE. CREDIT:  NASA 



FROM: NASA
NASA Orbiter Observations Point to 'Dry Ice' Snowfall on Mars

PASADENA, Calif. -- NASA's Mars Reconnaissance Orbiter (MRO) data have given scientists the clearest evidence yet of carbon dioxide snowfalls on Mars. This reveals the only known example of carbon dioxide snow falling anywhere in our solar system.

Frozen carbon dioxide, better known as "dry ice," requires temperatures of about minus 193 degrees Fahrenheit (minus 125 Celsius), which is much colder than needed for freezing water. Carbon dioxide snow reminds scientists that although some parts of Mars may look quite Earth-like, the Red Planet is very different. The report is being published in the Journal of Geophysical Research.

"These are the first definitive detections of carbon dioxide snow clouds," said the report's lead author Paul Hayne of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "We firmly establish the clouds are composed of carbon dioxide -- flakes of Martian air -- and they are thick enough to result in snowfall accumulation at the surface."

The snow falls occurred from clouds around the Red Planet's south pole in winter. The presence of carbon dioxide ice in Mars' seasonal and residual southern polar caps has been known for decades. Also, NASA's Phoenix Lander mission in 2008 observed falling water-ice snow on northern Mars.

Hayne and six co-authors analyzed data gained by looking at clouds straight overhead and sideways with the Mars Climate Sounder, one of six instruments on MRO. This instrument records brightness in nine wavebands of visible and infrared light as a way to examine particles and gases in the Martian atmosphere.

The data provide information about temperatures, particle sizes and their concentrations. The new analysis is based on data from observations in the south polar region during southern Mars winter in 2006-2007, identifying a tall carbon dioxide cloud about 300 miles (500 kilometers) in diameter persisting over the pole and smaller, shorter-lived, lower-altitude carbon dioxide ice clouds at latitudes from 70 to 80 degrees south.

"One line of evidence for snow is that the carbon dioxide ice particles in the clouds are large enough to fall to the ground during the lifespan of the clouds," co-author David Kass of JPL said. "Another comes from observations when the instrument is pointed toward the horizon, instead of down at the surface. The infrared spectra signature of the clouds viewed from this angle is clearly carbon dioxide ice particles and they extend to the surface. By observing this way, the Mars Climate Sounder is able to distinguish the particles in the atmosphere from the dry ice on the surface."

Mars' south polar residual ice cap is the only place on Mars where frozen carbon dioxide persists on the surface year-round. Just how the carbon dioxide from Mars' atmosphere gets deposited has been in question. It is unclear whether it occurs as snow or by freezing out at ground level as frost. These results show snowfall is especially vigorous on top of the residual cap.

"The finding of snowfall could mean that the type of deposition -- snow or frost -- is somehow linked to the year-to-year preservation of the residual cap," Hayne said.

JPL provided the Mars Climate Sounder instrument and manages the MRO Project for NASA's Science Mission Directorate in Washington.

Monday, August 6, 2012

CURIOSITY REPORT AFTER LANDING ON MARS

FROM: NASA
NASA's most advanced Mars rover, Curiosity, has landed on the Red Planet. The one-ton rover, hanging by ropes from a rocket backpack, touched down onto Mars early Monday EDT to end a 36-week flight and begin a two-year investigation. President Obama said the landing "will stand as a point of national pride far into the future."
After seven dramatic minutes of entry, descent, and landing, everyone will want to know: did Curiosity survive? There’s a possibility we won’t know. At least not right away.

During its descent through the atmosphere, Curiosity must switch to a new antenna for each transformation it makes. At each switch, we could lose lock on the signal for a short time. That won’t hurt the rover. It just means we won’t know what’s happening right way.

Even with a solid signal, the communications link direct to Earth only works during the first half of the rover’s descent. Why? Like Earth, Mars is spinning – and during landing, Curiosity and its landing site will disappear from view, like the sun setting.

Out of sight equals the end of direct radio contact.

BUT…NASA has two spacecraft orbiting Mars that can help.

For the second half of Curiosity’s descent, the Mars Odyssey orbiter is in a good place to pick up the rover’s signal and send it right back to Earth. To best hear Curiosity’s signal, Odyssey must rotate about an hour before landing.

That sounds easy, but engineers are asking Odyssey to perform a maneuver it’s never tried before. Will it work? Probably. But it’s not a sure thing.

If Odyssey doesn’t rotate successfully, never fear! The rover won’t be affected whatsoever! Once again, it just means we have to wait longer to hear from the rover.

Odyssey could perform as hoped, but we’re still not home free! Engineers always think of ‘what ifs.’ For instance, what if the rover lands on a slope? If so, the low flying Odyssey orbiter might not be able to pick up its signal.

Even if everything goes according to plan with Odyssey, there’s a final challenge: time. The rover may be standing safe on Mars, but Odyssey has to be quick in getting the signal. Odyssey is moving fast. It will only be in the line of sight to hear from the rover for a few minutes--perhaps no more than 5.

So the Mars Reconnaissance Orbiter plays the role of backup. It will also fly overhead to capture what happens and then store the landing data it collects onboard, for playback to Earth a few hours later. Engineers then have to decode the data, which takes several hours.

Sometime in the middle of the night for Curiosity’s mission team, it’s possible that the orbiter could tell us the rover’s fate.

Or, there are other scenarios where the rover might be perfectly safe, but we might not hear from it for three days.

That’s all to say: Curiosity’s landing is filled with drama and we’ll need lots of patience. No wonder they call this ‘rocket science.’


› View Now

Search This Blog

Translate

White House.gov Press Office Feed