Showing posts with label ORION NEBULA. Show all posts
Showing posts with label ORION NEBULA. Show all posts

Tuesday, March 18, 2014

STELLAR WINDS AND CLOUDS

FROM:  NASA 

This esthetic close-up of cosmic clouds and stellar winds features LL Orionis, interacting with the Orion Nebula flow. Adrift in Orion's stellar nursery and still in its formative years, variable star LL Orionis produces a wind more energetic than the wind from our own middle-aged Sun. As the fast stellar wind runs into slow moving gas a shock front is formed, analogous to the bow wave of a boat moving through water or a plane traveling at supersonic speed. The small, arcing, graceful structure just above and left of center is LL Ori's cosmic bow shock, measuring about half a light-year across. The slower gas is flowing away from the Orion Nebula's hot central star cluster, the Trapezium, located off the upper left corner of the picture. In three dimensions, LL Ori's wrap-around shock front is shaped like a bowl that appears brightest when viewed along the "bottom" edge. The beautiful picture is part of a large mosaic view of the complex stellar nursery in Orion, filled with a myriad of fluid shapes associated with star formation. Image Credit: NASA, ESA and the Hubble Heritage Team.

Tuesday, August 27, 2013

IMAGE OF NEAR-EARTH OBJECT 1998 KN3


FROM:  NASA 

This image shows the potentially hazardous near-Earth object 1998 KN3 as it zips past a cloud of dense gas and dust near the Orion nebula. NEOWISE, the asteroid-hunting portion of the Wide-field Infrared Survey Explorer, or WISE, mission, snapped infrared pictures of the asteroid, seen as the yellow-green dot at upper left. Because asteroids are warmed by the sun to roughly room temperature, they glow brightly at the infrared wavelengths used by WISE. Astronomers use infrared light from asteroids to measure their sizes, and when combined with visible-light observations, they can also measure the reflectivity of their surfaces. The WISE infrared data reveal that this asteroid is about .7 mile (1.1 kilometers) in diameter and reflects only about 7 percent of the visible light that falls on its surface, which means it is relatively dark. In this image, blue denotes shorter infrared wavelengths, and red, longer. Hotter objects emit shorter-wavelength light, so they appear blue. The blue stars, for example, have temperatures of thousands of degrees. The coolest gas and dust appears red. The asteroid appears yellow in the image because it is about room temperature: cooler than the distant stars, but warmer than the dust. JPL manages the Wide-field Infrared Survey Explorer for NASA's Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. Image Credit: NASA/JPL-Caltech.


Thursday, February 7, 2013

WISE IMAGE OF ORION NEBULA



FROM: NASA

The Orion nebula is featured in this sweeping image from NASA's Wide-field Infrared Survey Explorer, or WISE. The constellation of Orion is prominent in the evening sky throughout the world from about December through April of each year. The nebula (also catalogued as Messier 42) is located in the sword of Orion, hanging from his famous belt of three stars. The star cluster embedded in the nebula is visible to the unaided human eye as a single star, with some fuzziness apparent to the most keen-eyed observers. Because of its prominence, cultures all around the world have given special significance to Orion. The Maya of Mesoamerica envision the lower portion of Orion, his belt and feet (the stars Saiph and Rigel), as being the hearthstones of creation, similar to the triangular three-stone hearth that is at the center of all traditional Maya homes. The Orion nebula, lying at the center of the triangle, is interpreted by the Maya as the cosmic fire of creation surrounded by smoke.

This metaphor of a cosmic fire of creation is apt. The Orion nebula is an enormous cloud of dust and gas where vast numbers of new stars are being forged. It is one of the closest sites of star formation to Earth and therefore provides astronomers with the best view of stellar birth in action. Many other telescopes have been used to study the nebula in detail, finding wonders such as planet-forming disks forming around newly forming stars. WISE was an all-sky survey giving it the ability to see these sites of star formation in a larger context. This view spans more than six times the width of the full moon, covering a region nearly 100 light-years across. In it, we see the Orion nebula surrounded by large amounts of interstellar dust, colored green.

Astronomers now realize that the Orion nebula is part of the larger Orion molecular cloud complex, which also includes the Flame nebula. This complex in our Milky Way galaxy is actively making new stars. It is filled with dust warmed by the light of the new stars within, making the dust glow in infrared light.

Color in this image represents specific infrared wavelengths. Blue represents light emitted at 3.4-micron wavelengths and cyan (blue-green) represents 4.6 microns, both of which come mainly from hot stars. Relatively cooler objects, such as the dust of the nebulae, appear green and red. Green represents 12-micron light and red represents 22-micron light. Image Credit: NASA/JPL-Caltech
/UCLA

Wednesday, March 14, 2012

NASA RELEASES NEW VIEW OF THE ORION NEBULA


The photo and excerpt below are from the NASA website:
This new view of the Orion Nebula highlights fledgling stars hidden in the gas and clouds. It shows infrared observations taken by NASA's Spitzer Space Telescope and the European Space Agency's Herschel mission, in which NASA plays an important role. Stars form as clumps of this gas and dust collapses, creating warm globs of material fed by an encircling disk. These dusty envelopes glow brightest at longer wavelengths, appearing as red dots in this image. In several hundred thousand years, some of the forming stars will accrete enough material to trigger nuclear fusion at their cores and then blaze into stardom. Spitzer is designed to see shorter infrared wavelengths than Herschel. By combining their observations, astronomers get a more complete picture of star formation. The colors in this image relate to the different wavelengths of light, and to the temperature of material, mostly dust, in this region of Orion. Data from Spitzer show warmer objects in blue, with progressively cooler dust appearing green and red in the Herschel datasets. The more evolved, hotter embryonic stars thus appear in blue. Infrared data at wavelengths of 8.0 and 24 microns from Spitzer are rendered in blue. Herschel data with wavelengths of 70 and 160 microns are represented in green and red, respectively. This image was released on Feb. 29, 2012. Image Credit: NASA/ESA/JPL-Caltech/IRAM




Search This Blog

Translate

White House.gov Press Office Feed