Showing posts with label HUBBLE TELESCOPE. Show all posts
Showing posts with label HUBBLE TELESCOPE. Show all posts

Thursday, April 18, 2013

IMAGE OF NGC 2768

 
  FROM: NASA


The soft glow in this image is NGC 2768, an elliptical galaxy located in the northern constellation of Ursa Major (The Great Bear). NGC 2768 appears here as a bright oval on the sky, surrounded by a wide, fuzzy cloud of material. This image, taken by the NASA/ESA Hubble Space Telescope, shows the dusty structure encircling the center of the galaxy, forming a knotted ring around the galaxy’s brightly glowing middle. Interestingly, this ring lies perpendicular to the plane of NGC 2768 itself, stretching up and out of the galaxy. The dust in NGC 2768 forms an intricate network of knots and filaments. In the center of the galaxy are two tiny, S-shaped symmetric jets. These two flows of material travel outwards from the galactic center along curved paths, and are masked by the tangle of dark dust lanes that spans the body of the galaxy. These jets are a sign of a very active center. NGC 2768 is an example of a Seyfert galaxy, an object with a supermassive black hole at its center. This speeds up and sucks in gas from the nearby space, creating a stream of material swirling inwards towards the black hole known as an accretion disk. This disk throws off material in very energetic outbursts, creating structures like the jets seen in the image above. Image Credit: NASA/ESA/Hubble

Wednesday, December 26, 2012

GALAXY EVOLUTION

FROM: NASA

 

The Hubble Legacy: Galaxy Evolution

Three astronomers explain how Hubble acts like a time machine by detecting which galaxies are moving toward and away from us.

Wednesday, October 31, 2012

THE DEAD EXOPLANET



FROM: NASA
Study of Hubble Data Revives 'Dead' Exoplanet


In 2008, Hubble astronomers announced the detection of a giant planet around the bright star Fomalhaut. Recent studies have questioned this conclusion. Now, a reanalysis of Hubble data has revived the "deceased" exoplanet as a dust-shrouded world with less than twice the mass of Jupiter.

Credit: NASA's Goddard Space Flight Center

Monday, August 27, 2012

HISTORY OF UNDERSTANDING THE AGE OF THE UNIVERSE


FROM: NASA

Astronomers determine properties of the universe by fitting the WMAP data with models. Values for when the first stars appear, the amount of dark matter, the age of the universe etc. are adjusted in the model until the resulting background matches the WMAP observations. The model that best fits the data gives an age for the universe of 13.7 ± 0.2 billion years.
 

Early estimates of the Age of the Universe

In the 1920's Edwin Hubble discovered the expansion of the universe. He found that galaxies which are further away are moving at a higher speed following the law, v=Hd, where v is the velocity in km/s, d is the distance in Mpc, and H is the Hubble constant in km/s/Mpc. By independently measuring the velocity and distances to galaxies, the value of H could be determined. Astronomers further determined that the age of the universe is related to Hubble's constant, and that it is between 1/H and 2/3H depending on cosmological models adopted. The velocity could be determined via the redshift in the spectrum. The distance to the galaxy can be determined using observations of certain types of pulsating stars, called Cepheids, whose instrinsic brightness is related to the period of their brightness variation. However, the accuracy of the distance measurement was hampered by how faint ground based telescopes could see. Up until the 1990's, the best estimates for H were between 50 km/s/Mpc and 90 km/s/Mpc, giving a range on the age of the universe between 7 and 20 billion years.

Enter the Hubble Space Telescope

So in 1993, the orbiting Hubble Space Telescope began a "key project" to obtain distances to the Cepheids in 18 galaxies. Astronomers were able to obtain for the first time more precise distances, and a more accurate value of H. In 1999 after several years of observations with HST astronomers were able to estimate H to be 71 km/s/Mpc within 10% uncertainty, one of the greatest achievements of modern astronomy. Extrapolating back to the Big Bang, that value of H implied an age between 9 and 14 billion years old.

A New Approach using WMAP

In February 2003, the WMAP project released an all-sky map of the radiation emitted before there were any stars. This cosmic microwave background radiation (CMB) is the remnant heat from the Big-Bang and was predicted already in 1946 by George Gamow and Robert Dicke. Since then, astronomers have tried to detect and interpret the CMB. The first detection of the CMB was found in 1965 by chance by Arno Penzias and Robert Woodrow Wilson using a radiometer built to detect astronomical radio signals. They found an excess in their measurements which was later interpreted as the CMB, a 2.725 kelvin thermal spectrum of black body radiation that fills the universe. In 1992, the satellite Cosmic Background Explorer (COBE) which was designed to map the CMB showed for the first time large scale fluctuations in the CMB. These fluctuations were interpreted as evidences of what later formed clusters of galaxies and voids. However, only WMAP had the resolution and sensitivity to detect tiny fluctuations and constrain the age of the universe with high precision. The WMAP team's results are based on the underlying model used to fit their data. This model assumes that 70% of the energy of the present universe is in the form of dark energy, 26% of the energy is in the form of cold (not thermalized) dark matter, and the remaining 4% of the energy is in the atoms and photons. According to their estimates the universe is 13.7 billion years old with an uncertainty of 200 million years. The WMAP value of H is 71 ± 4 km/s/Mpc which is in agreement with the HST key project.

Another approach

Another way of obtaining the age of the universe is by dating stars. Some of the oldest stars live inside globular clusters and their ages have been extensively estimated in the past decade. For a while, astronomers were puzzled by the fact that those stars seemed to be a few billion years older than the age of the universe estimated from the Hubble constant. Is there a problem with H
or with the cluster's age? It turned out that age dating of globular clusters stars is very tricky and inaccurate distances to the clusters, as well caveats in stellar evolution, can solve the mystery. The age of clusters is proportional to one over the luminosity of the RR Lyra stars which are used to determine the distances to globular clusters. Therefore, accurate distances were needed and could only be obtained after the European Hipparcos satellite in the mid-90s. By using the new distance estimates, the age of the clusters fell from 15 billion years to 11.5 billion years with an uncertainty of about 1 billion year. These results agree with the age of the universe from both the Hubble constant and WMAP.
 
Publication Date: May 2006
NOTE: ABOVE "H" SHOULD BE "Ho."

Monday, April 2, 2012

HUBBLE SPOTS UFO GALAXY



The NASA/ESA Hubble Space Telescope has spotted the "UFO Galaxy." NGC 2683 is a spiral galaxy seen almost edge-on, giving it the shape of a classic science fiction spaceship. This is why the astronomers at the Astronaut Memorial Planetarium and Observatory, Cocoa, Fla., gave it this attention-grabbing nickname. While a bird's eye view lets us see the detailed structure of a galaxy (such as this Hubble image of a barred spiral), a side-on view has its own perks. In particular, it gives astronomers a great opportunity to see the delicate dusty lanes of the spiral arms silhouetted against the golden haze of the galaxy’s core. In addition, brilliant clusters of young blue stars shine scattered throughout the disc, mapping the galaxy’s star-forming regions. Perhaps surprisingly, side-on views of galaxies like this one do not prevent astronomers from deducing their structures. Studies of the properties of the light coming from NGC 2683 suggest that this is a barred spiral galaxy, even though the angle we see it at does not let us see this directly. This image is produced from two adjacent fields observed in visible and infrared light by Hubble’s Advanced Camera for Surveys. A narrow strip which appears slightly blurred and crosses most the image horizontally is a result of a gap between Hubble’s detectors. This strip has been patched using images from observations of the galaxy made by ground-based telescopes, which show significantly less detail. The field of view is approximately 6.5 by 3.3 arcminutes. Image Credit: ESA/Hubble & NASA
The Photo and excerpt are from the NASA website:

Search This Blog

Translate

White House.gov Press Office Feed