Showing posts with label AMES RESEARCH CENTER. Show all posts
Showing posts with label AMES RESEARCH CENTER. Show all posts

Tuesday, April 22, 2014

LADEE HITS THE MOON

Right:   An artist's concept of NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft seen orbiting near the surface of the moon.  Image Credit-NASA Ames-Dana Berry.

FROM:  NASA 

Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface of the moon, as planned, between 9:30 and 10:22 p.m. PDT Thursday, April 17.

LADEE lacked fuel to maintain a long-term lunar orbit or continue science operations and was intentionally sent into the lunar surface. The spacecraft's orbit naturally decayed following the mission's final low-altitude science phase.
During impact, engineers believe the LADEE spacecraft, the size of a vending machine, broke apart, with most of the spacecraft’s material heating up several hundred degrees – or even vaporizing – at the surface. Any material that remained is likely buried in shallow craters.

"At the time of impact, LADEE was traveling at a speed of 3,600 miles per hour – about three times the speed of a high-powered rifle bullet," said Rick Elphic, LADEE project scientist at Ames. "There’s nothing gentle about impact at these speeds – it’s just a question of whether LADEE made a localized craterlet on a hillside or scattered debris across a flat area. It will be interesting to see what kind of feature LADEE has created."

In early April, the spacecraft was commanded to carry out maneuvers that would lower its closest approach to the lunar surface. The new orbit brought LADEE to altitudes below one mile (two kilometers) above the lunar surface. This is lower than most commercial airliners fly above Earth, enabling scientists to gather unprecedented science measurements.

On April 11, LADEE performed a final maneuver to ensure a trajectory that caused the spacecraft to impact the far side of the moon, which is not in view of Earth or near any previous lunar mission landings. LADEE also survived the total lunar eclipse on April 14 to 15. This demonstrated the spacecraft's ability to endure low temperatures and a drain on batteries as it, and the moon, passed through Earth's deep shadow.

In the coming months, mission controllers will determine the exact time and location of LADEE's impact and work with the agency’s Lunar Reconnaissance Orbiter (LRO) team to possibly capture an image of the impact site. Launched in June 2009, LRO provides data and detailed images of the lunar surface.

"It's bittersweet knowing we have received the final transmission from the LADEE spacecraft after spending years building it in-house at Ames, and then being in constant contact as it circled the moon for the last several months," said Butler Hine, LADEE project manager at Ames.

Launched in September 2013 from NASA's Wallops Flight Facility in Virginia, LADEE began orbiting the moon Oct. 6 and gathering science data Nov. 10. The spacecraft entered its science orbit around the moon's equator on Nov. 20, and in March 2014, LADEE extended its mission operations following a highly successful 100-day primary science phase.

LADEE also hosted NASA’s first dedicated system for two-way communication using laser instead of radio waves. The Lunar Laser Communication.

Demonstration (LLCD) made history using a pulsed laser beam to transmit data over the 239,000 miles from the moon to the Earth at a record-breaking download rate of 622 megabits-per-second (Mbps). In addition, an error-free data upload rate of 20 Mbps was transmitted from the primary ground station in New Mexico to the Laser Communications Space Terminal aboard LADEE.

LADEE gathered detailed information about the structure and composition of the thin lunar atmosphere. In addition, scientists hope to use the data to address a long-standing question: Was lunar dust, electrically charged by sunlight, responsible for the pre-sunrise glow seen above the lunar horizon during several Apollo missions?

"LADEE was a mission of firsts, achieving yet another first by successfully flying more than 100 orbits at extremely low altitudes," said Joan Salute, LADEE program executive, at NASA Headquarters in Washington. "Although a risky decision, we're already seeing evidence that the risk was worth taking.”
A thorough understanding of the characteristics of our nearest celestial neighbor will help researchers understand other bodies in the solar system, such as large asteroids, Mercury and the moons of outer planets.

NASA also included the public in the final chapter of the LADEE story. A “Take the Plunge” contest provided an opportunity for the public to guess the date and time of the spacecraft’s impact via the internet. Thousands submitted predictions. NASA will provide winners a digital congratulatory certificate.

NASA's Science Mission Directorate in Washington funds the LADEE mission. Ames was responsible for spacecraft design, development, testing and mission operations, in addition to managing the overall mission. NASA's Goddard Space Flight Center in Greenbelt, Md., managed the science instruments, technology demonstration payload and science operations center, and provided mission support. Goddard also manages the LRO mission. Wallops was responsible for launch vehicle integration, launch services and operations. NASA's Marshall Space Flight Center in Huntsville, Ala., managed LADEE within the Lunar Quest Program Office.

Friday, March 2, 2012

PIONEER 10 THE SOLAR EXPLORER CELEBRATES IT'S 40TH ANNIVERSARY



The picture (Right) and excerpt below are from the NASA-Ames Research Center website: 

“Ames Celebrates the 40th Anniversary of Pioneer 1002.29.12 Launched on March 2,1972, Pioneer 10 was the first spacecraft to travel through the Asteroid belt, and the first spacecraft to make direct observations and obtain close-up images of Jupiter. Famed as the most remote object ever made through most of its mission, Pioneer 10 traveled more than 8 billion miles through space in 25 years. (On Feb. 17, 1998, Voyager 1's heliocentric radial distance equaled Pioneer 10 at 69.4 AU and thereafter exceeded Pioneer 10 at the rate of 1.02 AU per year.)

Pioneer 10 made its closest encounter to Jupiter on Dec. 3, 1973, passing within 81,000 miles of the cloudtops. This historic event marked humans' first approach to Jupiter and opened the way for exploration of the outer solar system - for Voyager to tour the outer planets, for Ulysses to break out of the ecliptic, for Galileo to investigate Jupiter and its satellites, and for Cassini to go to Saturn and probe Titan. During its Jupiter encounter, Pioneer 10 imaged the planet and its moons, and took measurements of Jupiter's magnetosphere, radiation belts, magnetic field, atmosphere, and interior. These measurements of the intense radiation environment near Jupiter were crucial in designing the Voyager and Galileo spacecraft.

Pioneer 10 made valuable scientific investigations in the outer regions of our solar system until the end of its science mission on March 31,1997. Pioneer 10’s weak signal continued to be tracked by the Deep Space Network (DSN) as part of an advanced concept study of communication technology supporting NASA's future interstellar probe mission.

After more than 30 years, it appears the venerable Pioneer 10 spacecraft has sent its last signal to Earth. Pioneer's last, very weak signal was received Jan. 23, 2003. The power source on Pioneer 10 finally degraded to the point in 2003 where its signal to Earth dropped below the threshold for detection. NASA's Deep Space Network (DSN) did not detect a signal during a contact attempt on Feb. 7, 2003. The previous three contacts, including the Jan. 23, 2003 signal, were very faint, with no telemetry received. The last time a Pioneer 10 contact returned telemetry data was April 27, 2002.

Pioneer 10 will continue to coast silently as a ghost ship through deep space into interstellar space, heading generally for the red star Aldebaran, which forms the eye of Taurus (The Bull). Aldebaran is about 68 light years away and it will take Pioneer more than 2 million years to reach it. “


Search This Blog

Translate

White House.gov Press Office Feed