Showing posts with label STAMPEDE. Show all posts
Showing posts with label STAMPEDE. Show all posts

Tuesday, July 22, 2014

RESEARCH USING SUPERCOMPUTER THAT COULD LINK GENES TO TRAITS AND DISEASES

FROM:  NATIONAL SCIENCE FOUNDATION 
"Bottom-up" proteomics

NSF-funded supercomputer helps researchers interpret genomes
Tandem protein mass spectrometry is one of the most widely used methods in proteomics, the large-scale study of proteins, particularly their structures and functions.

Researchers in the Marcotte group at the University of Texas at Austin are using the Stampede supercomputer to develop and test computer algorithms that let them more accurately and efficiently interpret proteomics mass spectrometry data.

The researchers are midway through a project that analyzes the largest animal proteomics dataset ever collected (data equivalent to roughly half of all currently existing shotgun proteomics data in the public domain). These samples span protein extracts from a wide variety of tissues and cell types sampled across the animal tree of life.

The analyses consume considerable computing cycles and require the use of Stampede's large memory nodes, but they allow the group to reconstruct the 'wiring diagrams' of cells by learning how all of the proteins encoded by a genome are associated into functional pathways, systems, and networks. Such models let scientists better define the functions of genes, and link genes to traits and diseases.

"Researchers would usually analyze these sorts of datasets one at a time," Edward Marcotte said. "TACC let us scale this to thousands."

Sunday, July 13, 2014

SUPERCOMPUTER USED FOR MATERIAL SCIENCE RESEARCH

FROM:  NATIONAL SCIENCE FOUNDATION 
Helping ideas gel

NSF-supported Stampede supercomputer powers innovations in materials science
Cornell University researchers are using the Stampede supercomputer at the Texas Advanced Computing Center to help explain a nanoscale mystery: How can a colloidal gel--a smart material with promise in biomedicine--maintain its stability?

Colloidal gels are comprised of microscopic particles suspended in a solvent. They form networks of chained-together particles that support their own weight under gravity. For this reason, the soft solids form an emerging class of smart materials such as injectable pharmaceuticals and artificial tissue scaffolds. However, they are also beset by stability problems.

Using Stampede, researchers conducted the largest and longest simulation of a colloidal gel ever recorded. Their simulations helped answer several questions, including: What are the concentration and structure of the network strands? How does the gel restructure itself over time? And how does its structure affect a gel's mechanical properties?

"We have been absolutely happy with our entire experience on Stampede," said Roseanna N. Zia, an assistant professor of chemical and biomolecular engineering at Cornell. "The support of the review panel in granting such a large series of requests was just fantastic. In addition, the help desk has been consistently outstanding, and our XSEDE [Extreme Science and Engineering Discovery Environment] Campus Champion was a huge help in getting started. There is no way this study could have taken place without XSEDE's computational support."

XSEDE is the most advanced and robust collection of integrated advanced digital resources and services in the world. Thousands of scientists use XSEDE each year to interactively share computing resources, data and expertise. The five-year, $121-million project is supported by the National Science Foundation.

Zia presented the results on her colloidal gel research at the Society of Rheology annual meeting in October 2013. Her work was featured on the cover of the January 2014 Rheology Bulletin, and she was asked to contribute to an invitation-only special issue of the Journal of Rheology in 2014.

-- Aaron Dubrow, NSF
Investigators
Roseanna Zia
Daniel Stanzione

Search This Blog

Translate

White House.gov Press Office Feed