Showing posts with label QUANTUM DOTS. Show all posts
Showing posts with label QUANTUM DOTS. Show all posts

Thursday, May 28, 2015

VERY PROMISING QUANTUM DOTS

FROM:  NATIONAL SCIENCE FOUNDATION
Many uses in researching quantum dots

These nanoparticles can achieve higher levels of energy when light stimulates them.

It's easier to dissolve a sugar cube in a glass of water by crushing the cube first, because the numerous tiny particles cover more surface area in the water than the cube itself. In a way, the same principle applies to the potential value of materials composed of nanoparticles.

Because nanoparticles are so small, millions of times smaller than the width of a human hair, they have "tremendous surface area," raising the possibility of using them to design materials with more efficient solar-to-electricity and solar-to-chemical energy pathways, says Ari Chakraborty, an assistant professor of chemistry at Syracuse University.

"They are very promising materials," he says. "You can optimize the amount of energy you produce from a nanoparticle-based solar cell."

Chakraborty, an expert in physical and theoretical chemistry, quantum mechanics and nanomaterials, is seeking to understand how these nanoparticles interact with light after changing their shape and size, which means, for example, they ultimately could provide enhanced photovoltaic and light-harvesting properties. Changing their shape and size is possible "without changing their chemical composition," he says. "The same chemical compound in different sizes and shapes will interact differently with light."

Specifically, the National Science Foundation (NSF)-funded scientist is focusing on quantum dots, which are semiconductor crystals on a nanometer scale. Quantum dots are so tiny that the electrons within them exist only in states with specific energies. As such, quantum dots behave similarly to atoms, and, like atoms, can achieve higher levels of energy when light stimulates them.

Chakraborty works in theoretical and computational chemistry, meaning "we work with computers and computers only," he says. "The goal of computational chemistry is to use fundamental laws of physics to understand how matter interacts with each other, and, in my research, with light. We want to predict chemical processes before they actually happen in the lab, which tells us which direction to pursue."

These atoms and molecules follow natural laws of motion, "and we know what they are," he says. "Unfortunately, they are too complicated to be solved by hand or calculator when applied to chemical systems, which is why we use a computer."

The "electronically excited" states of the nanoparticles influence their optical properties, he says.

"We investigate these excited states by solving the Schrödinger equation for the nanoparticles," he says, referring to a partial differential equation that describes how the quantum state of some physical system changes with time. "The Schrödinger equation provides the quantum mechanical description of all the electrons in the nanoparticle.

"However, accurate solution of the Schrödinger equation is challenging because of large number of electrons in system," he adds. "For example, a 20 nanometer CdSe quantum dot contains over 6 million electrons. Currently, the primary focus of my research group is to develop new quantum chemical methods to address these challenges. The newly developed methods are implemented in open-source computational software, which will be distributed to the general public free of charge."

Solar voltaics, "requires a substance that captures light, uses it, and transfers that energy into electrical energy," he says. With solar cell materials made of nanoparticles, "you can use different shapes and sizes, and capture more energy," he adds. "Also, you can have a large surface area for a small amount of materials, so you don't need a lot of them."

Nanoparticles also could be useful in converting solar energy to chemical energy, he says. "How do you store the energy when the sun is not out?" he says. "For example, leaves on a tree take energy and store it as glucose, then later use the glucose for food. One potential application is to develop artificial leaves for artificial photosynthesis. There is a huge area of ongoing research to make compounds that can store energy."

Medical imaging presents another useful potential application, he says.

"For example, nanoparticles have been coated with binding agents that bind to cancerous cells," he says. "Under certain chemical and physical conditions, the nanoparticles can be tuned to emit light, which allows us to take pictures of the nanoparticles. You could pinpoint the areas where there are cancerous cells in the body. The regions where the cancerous cells are located show up as bright spots in the photograph."

Chakraborty is conducting his research under an NSF Faculty Early Career Development (CAREER) award. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organization. NSF is funding his work with $622,123 over five years.

As part of the grant's educational component, Chakraborty is hosting several students from a local high school--East Syracuse Mineoa High School--in his lab. He also has organized two workshops for high school teachers on how to use computational tools in their classrooms "to make chemistry more interesting and intuitive to high school students," he says.

"The really good part about it is that the kids can really work with the molecules because they can see them on the screen and manipulate them in 3-D space," he adds. "They can explore their structure using computers. They can measure distances, angles, and energies associated with the molecules, which is not possible to do with a physical model. They can stretch it, and see it come back to its original structure. It's a real hands-on experience that the kids can have while learning chemistry."

-- Marlene Cimons, National Science Foundation
Investigators
Arindam Chakraborty
Related Institutions/Organizations
Syracuse University

Monday, April 21, 2014

LANL REPORTS ON SOLAR PANEL-WINDOW

FROM:  LOS ALAMOS NATIONAL LABORATORY 

Right:  This schematic shows how the quantum dots are embedded in the plastic matrix and capture sunlight to improve solar panel efficiency.


Shiny quantum dots brighten future of solar cells
Photovoltaic solar-panel windows could be next for your house

LOS ALAMOS, N.M., April 14, 2014—A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University of Milano-Bicocca (UNIMIB), Italy. Their project demonstrates that superior light-emitting properties of quantum dots can be applied in solar energy by helping more efficiently harvest sunlight.

“The key accomplishment is the demonstration of large-area luminescent solar concentrators that use a new generation of specially engineered quantum dots,” said lead researcher Victor Klimov of the Center for Advanced Solar Photophysics (CASP) at Los Alamos.

Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry.  Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of the Kindle Fire ™ e-reader.

Light-harvesting antennas

A luminescent solar concentrator (LSC) is a photon management device, representing a slab of transparent material that contains highly efficient emitters such as dye molecules or quantum dots. Sunlight absorbed in the slab is re-radiated at longer wavelengths and guided towards the slab edge equipped with a solar cell.

Klimov explained, “The LSC serves as a light-harvesting antenna which concentrates solar radiation collected from a large area onto a much smaller solar cell, and this increases its power output.”

“LSCs are especially attractive because in addition to gains in efficiency, they can enable new interesting concepts such as photovoltaic windows that can transform house facades into large-area energy generation units,” said Sergio Brovelli, who worked at Los Alamos until 2012 and is now a faculty member at UNIMIB.

Because of highly efficient, color-tunable emission and solution processability, quantum dots are attractive materials for use in inexpensive, large-area LSCs.   One challenge, however, is an overlap between emission and absorption bands in the dots, which leads to significant light losses due to the dots re-absorbing some of the light they produce.

“Giant” but still tiny, engineered dots

To overcome this problem the Los Alamos and UNIMIB researchers have developed LSCs based on quantum dots with artificially induced large separation between emission and absorption bands (called a large Stokes shift).

These “Stokes-shift” engineered quantum dots represent cadmium selenide/cadmium sulfide (CdSe/CdS) structures in which light absorption is dominated by an ultra-thick outer shell of CdS, while emission occurs from the inner core of a narrower-gap CdSe. The separation of light-absorption and light-emission functions between the two different parts of the nanostructure results in a large spectral shift of emission with respect to absorption, which greatly reduces losses to re-absorption.

To implement this concept, Los Alamos researchers created a series of thick-shell (so-called “giant”) CdSe/CdS quantum dots, which were incorporated by their Italian partners into large slabs (sized in tens of centimeters) of polymethylmethacrylate (PMMA). While being large by quantum dot standards, the active particles are still tiny - only about hundred angstroms across. For comparison, a human hair is about 500,000 angstroms wide.

“A key to the success of this project was the use of a modified industrial method of cell-casting, we developed at UNIMIB Materials Science Department” said Francesco Meinardi, professor of Physics at UNIMIB.

Spectroscopic measurements indicated virtually no losses to re-absorption on distances of tens of centimeters. Further, tests using simulated solar radiation demonstrated high photon harvesting efficiencies of approximately 10% per absorbed photon achievable in nearly transparent samples, perfectly suited for utilization as photovoltaic windows.

Despite their high transparency, the fabricated structures showed significant enhancement of solar flux with the concentration factor of more than four. These exciting results indicate that “Stokes-shift-engineered” quantum dots represent a promising materials platform. It may enable the creation of solution processable large-area LSCs with independently tunable emission and absorption spectra.
Publication: A research paper, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” is published online this week in Nature Photonics.

Funding: The Center for Advanced Solar Photophyscis (CASP) is an Energy Frontier Research Center funded by the Office of Science of the US Department of Energy.

The work of the UNIMIB team was conducted within the UNIMIB Department of Materials Science and funded by Fondazione Cariplo (2012-0844) and the European Community’s Seventh Framework Programme (FP7/2007-2013; grant agreement no. 324603).

Thursday, December 12, 2013

LANL ON USE OF QUANTUM DOTS TO IMPROVE SOLAR CELLS

FROM:  LOS ALAMOS NATIONAL LABORATORY
Nontoxic Quantum Dot Research Improves Solar Cells

Record power-conversion efficiency at Los Alamos from quantum-dot sensitized photovoltaics

LOS ALAMOS, N.M., Dec. 10, 2013—Solar cells made with low-cost, non-toxic copper-based quantum dots can achieve unprecedented longevity and efficiency, according to a study by Los Alamos National Laboratory and Sharp Corporation.

“For the first time, we have certified the performance of a quantum dot sensitized solar cell at greater than 5 percent, which is among the highest reported for any quantum dot solar cell,” said Hunter McDaniel, a Los Alamos postdoctoral researcher and the lead author on a paper appearing in Nature Communications this week. “The robust nature of these devices opens up the possibility for commercialization of this emerging low-cost and low-toxicity photovoltaic technology,” he noted.

The reported solar cells are based on a new generation of nontoxic quantum dots (not containing either lead or cadmium as do most quantum dots used in solar cells). These dots are based on copper indium selenide sulfide and are rigorously optimized to reduce charge-carrier losses from surface defects and to provide the most complete coverage of the solar spectrum.

“The new solar cells were certified by the National Renewable Energy Laboratory (NREL) and demonstrated a record power-conversion efficiency for this type of devices,” according to Victor Klimov of Los Alamos, director of the Center for Advanced Solar Photophysics a DOE Energy Frontier Research Centers (EFRC). In addition to CASP-EFRC, this research has been also supported via a cooperative research agreement with Sharp Corporation.

The paper, “An integrated approach to realizing high-performance liquid-junction quantum dot sensitized solar cells” is scheduled for online publication in Nature Communications on Dec. 10, 2013.

The paper's authors are Hunter McDaniel, Nikolay S. Makarov, Jeffrey M. Pietryga, and Victor I. Klimov of the Center for Advanced Solar Photophysics, Los Alamos National Laboratory, in partnership with Nobuhiro Fuke of the Materials & Energy Technology Laboratory, Sharp Corporation, Japan.

Search This Blog

Translate

White House.gov Press Office Feed