Showing posts with label MICROBES. Show all posts
Showing posts with label MICROBES. Show all posts

Thursday, May 28, 2015

OCEAN PHOSPHORUS CYCLE AND THE ROLE OF MICROBES

FROM:  NATIONAL SCIENCE FOUNDATION
Revealing the ocean's hidden fertilizer
Tiny marine plants play major role in phosphorus cycle
Phosphorus is one of the most common substances on Earth.

An essential nutrient for every living organism--humans require approximately 700 milligrams per day--we're rarely concerned about consuming enough because it is in most of the foods we eat.

Despite its ubiquity and living organisms' dependence on it, we know surprisingly little about how it moves, or cycles, through the ocean environment.

Scientists studying the marine phosphorous cycle have known that phosphorus was absorbed by plants and animals and released back to seawater in the form of phosphate as these plants and animals decay and die.

But a growing body of research hints that microbes in the ocean transform phosphorus in ways that remain a mystery.

Hidden role of ocean's microbes

A new study by a research team from the Woods Hole Oceanographic Institution (WHOI) and Columbia University reveals for the first time a marine phosphorus cycle that is much more complex than previously thought.

The work also highlights the important but previously hidden role that some microbial communities play in using and breaking down forms of this essential element.

A paper reporting the findings is published this week in the journal Science.

"A reason to be excited about this elegant study is in the paper's last sentence: 'the environmental, ecological and evolutionary controls ...remain completely unknown,'" says Don Rice, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research through its Chemical Oceanography Program. "There's still a lot we don't know about the sea."

The work is also supported by an NSF Dimensions of Biodiversity grant.

"This is an exciting new discovery that closes a fundamental knowledge gap in our understanding of the marine phosphorus cycle," says the paper's lead author Ben Van Mooy, a biochemist at WHOI.

Much like phosphorus-based fertilizers boost the growth of plants on land, phosphorus in the ocean promotes the production of microbes and tiny marine plants called phytoplankton, which compose the base of the marine food chain.

Phosphonate mystery

It's been unclear exactly how phytoplankton are using the most abundant forms of phosphorus found in the ocean--phosphates and a strange form of phosphorus called phosphonates.

"Phosphonates have always been a huge mystery," Van Mooy says.

"No one's been able to figure out exactly what they are, and more importantly, if they're made and consumed quickly by microbes, or if they're just lying around in the ocean."

To find out more about phosphonates and how microbes metabolize them, the researchers took samples of seawater at a series of stations during a research cruise from Bermuda to Barbados.

They added phosphate to the samples so they could see the microbes in action.

The research team used ion chromatography onboard ship for water chemistry analyses, which allowed the scientists to observe how quickly microbes reacted to the added phosphate in the seawater.

"The ion chromatograph [IC] separates out the different families of molecules," explains Van Mooy.

"We added radioactive phosphate, then isolated the phosphonate to see if the samples became radioactive, too. It's the radioactive technique that let us see how fast phosphate was transformed to phosphonate."

Enter the microbes

The researchers found that about 5 percent of the phosphate in the shallow water samples was taken up by the microbes and changed to phosphonates.

In deeper water samples, which were taken at depths of 40 and 150 meters (131 feet and 492 feet), about 15 to 20 percent of the phosphates became phosphonates.

"Although evidence of the cycling of phosphonates has been mounting for nearly a decade, these results show for the first time that microbes are producing phosphonates in the ocean, and that it is happening very quickly," says paper co-author Sonya Dyhrman of Columbia University.

"An exciting aspect of this study was the application of the IC method at sea. In near-real-time, we could tell that the phosphate we added was being transformed to phosphonate."

Better understanding of phosphorus cycle

A better understanding of phosphorus cycling in the oceans is important, as it affects the marine food web and, therefore, the ability of the oceans to absorb atmospheric carbon dioxide.

The researchers say that solving the mystery of phosphonates also reinforces the need to identify the full suite of phosphorus biochemicals being produced and metabolized by marine microbes, and what physiological roles they serve for these cells.

"Such work will help us further resolve the complexities of how this critical element is cycled in the ocean," Dyhrman adds.

Grants from the Simons Foundation also supported the work.

-NSF-
Media Contacts
Cheryl Dybas, NSF

Sunday, September 14, 2014

WASTEWATER GETS A COLD

FROM:  NATIONAL SCIENCE FOUNDATION 
Harnessing the power of viruses to improve wastewater treatment
Researcher developing a system to isolate and replicate a natural phenomenon 
that removes pollutants and other contaminants

Just as certain viruses infect humans, there also are viruses that infect only bacteria. Unlike human viruses, however, which are non-discriminatory and will infect any number of different people, these viruses, known as bacteriophages, are "host-specific,'' meaning each will attack only one particular bacteria.

"Wherever bacteria exist, there are bacteriophages,'' says Ramesh Goel, an associate professor of civil and environmental engineering at the University of Utah. "If we go to any wetland, or streams or wastewater treatment process, bacteria are there, and so are bacteriophages."

Goel believes he can put this phenomenon to good use.

The National Science Foundation (NSF)-funded scientist, who studies the microbial ecology of natural and engineered systems, particularly those that use microbes to remove pollutants and other contaminants from waste water, is trying to harness the power of bacteriophages to rid treated wastewater of problematic bacteria that cause operational problems during treatment.

The use of bacteria in wastewater treatment has become increasingly popular in recent years, but it is not without challenges. Certain bacteria involved in the process, for example, called filamentous bacteria, continue to float on the surface of the water when the treatment is complete, rather than settle on the bottom where they can be removed through a simple physical process known as gravity settling.

"On the one hand, we use the bacteria to treat the water, but some are not cooperating and create problems," Goel says. "We end up having bacteria in our final, treated water."

The problem-causing bacteria are non-toxic to humans, making them harmless, but can cause problems if the treated water is discharged into streams or rivers, where they will consume oxygen and pose a threat to aquatic life.

"The danger is in having them escape with the treated water,'' he says, adding that to otherwise kill the bacteria "requires a lot of chlorine,'' as well as other challenges.

Goel is developing a system to isolate and replicate the viruses that infect several filamentous bacteria known to cause settling problems in biological wastewater treatment processes.

"The idea is to use either single or a mixture of phages to kill unwanted filamentous bacteria up to their optimum concentration, a process we call phage therapy for filamentous bulking," he says. "We have been able to demonstrate phage therapy for filamentous bulking in laboratory scale reactors. The next challenge is to bring it into practice for full scale applications."

In a related project, Goel also is trying to use phages to solve the problem of biofilm formation in wastewater treatment systems that use membrane filtering, rather than gravity settling. During this process, which sends treated wastewater flowing through a membrane to separate it from bacteria, the bacteria often form biofilms on the surface of the membranes, which are substances that resemble slime, a problem known as biofouling. Goel hopes to use bacteriophages to eliminate biofilms, thus preventing biofouling, either by direct application of phages or by using intermediate chemicals produced by phages that are capable of degrading biofilm.

If successful in these water treatments, the use of bacteriophages "will have tremendous impact, unimaginable impact, since these are worldwide problems," he says.

Goel thinks there may be additional future practical applications for bacteriophages separate from wastewater treatment. He sees potential for them in the health field, for example, in drug delivery or in using them to treat external bacterial infections, such as on skin, or on medical devices, such as catheters, "which sometimes get biofilms," he says. "You end up using expensive chemicals. Could we use phages to remove these biofilms?

"Can we use phages to deliver drugs?" he adds. "There may be some antibiotics we want to deliver that aren't reaching the person--the phages will not only kill that particular bacteria, but deliver the drug. These are all new ideas we are exploring."

Goel is conducting this research under an NSF Faculty Early Career Development (CAREER) award, which he received in 2011. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organization.

As part of the grant's educational component, Goel is hosting a number of local K-12 students in his lab, exposing them to the field of wastewater engineering and microbiology. He also is working with three women undergraduates in his lab; one of them, from the computer science department, is creating computer animations for public outreach.

"The whole idea is to use animations to create a virtual lab, something that will go beyond our borders and that we can share with other countries," he says. "The animations will show how phages infect bacteria, and we think they will really help students better understand these concepts."

-- Marlene Cimons, National Science Foundation
Investigators
Ramesh Goel
Related Institutions/Organizations
University of Utah

Tuesday, July 15, 2014

NSF REPORTS OCEAN MICROBES HAVE DAILY CYCLES OF ACTIVITY

FROM:  NATIONAL SCIENCE FOUNDATION 
Ocean's microbial megacity: Like humans, the sea's most abundant organisms have clear daily cycles
Coordinated timing may have implications for ocean food web

Imagine the open ocean as a microbial megacity, teeming with life too small to be seen.

In every drop of water, hundreds of types of bacteria can be found.

Now scientists have discovered that communities of these ocean microbes have their own daily cycles--not unlike the residents of a bustling city who tend to wake up, commute, work and eat at the same times.

Light-loving photoautotrophs--bacteria that need solar energy to help them photosynthesize food from inorganic substances--have been known to sun themselves on a regular schedule.

But in new research results published in this week's issue of the journal Science, researchers working at Station ALOHA, a deep ocean study site 100 kilometers north of Oahu, Hawaii, observed species of bacteria turning on cycling genes at slightly different times.

The switches suggest a wave of activity that passes through the microbial community.

"I like to say that they are singing in harmony," said Edward DeLong, a biological oceanographer at the University of Hawaii at Manoa and an author of this week's paper.

"For any given species, the gene transcripts for specific metabolic pathways turn on at the same time each day."

The observations were made possible by advanced microbial community RNA sequencing techniques, which allow for whole-genome profiling of multiple species at once.

DeLong and colleagues deployed a free-drifting robotic Environmental Sample Processor (ESP) as part of a National Science Foundation (NSF) Center for Microbial Oceanography: Research and Education (C-MORE) research expedition to Station ALOHA.

Riding the same ocean currents as the microbes it follows, the ESP is equipped to harvest the samples needed for this high-frequency, time-resolved analysis of microbial community dynamics.

What the scientists saw was intriguing: different species of bacteria expressing different types of genes in varying, but consistent, cycles--turning on, for example, restorative genes needed to rebuild solar-collecting powers at night, then ramping up with different gene activity to build new proteins during the day.

"It was almost like a shift of hourly workers punching in and out on a clock," DeLong said.

"This research is a major advance in understanding microbial communities through studies of gene expression in a dynamic environment," said Matt Kane, a program director in NSF's Directorate for Biological Sciences, which co-funds C-MORE with NSF's Directorate for Geosciences.

"It was accomplished by combining new instrumentation for remote sampling with state-of-the-art molecular biological techniques."

The coordinated timing of gene firing across different species of ocean microbes could have important implications for energy transformation in the sea.

"For decades, microbiologists have suspected that marine bacteria were actively responding to day-night cycles," said Mike Sieracki, a program director in NSF's Directorate for Geosciences.

"These researchers have shown that ocean bacteria are indeed very active and likely are synchronized with the sun."

The mechanisms that regulate this periodicity remain to be determined.

Can you set your watch by them?

DeLong said that you can, but it matters whether you're tracking the bacteria in the lab or at sea.

For example, maximum light levels at Station ALOHA are different than light conditions in experimental settings in the laboratory, which may have an effect on microbes' activity and daily cycles.

"That's part of why it's so important to conduct this research in the open ocean environment," said DeLong.

"There are some fundamental laws to be learned about how organisms interact to make the system work better as a whole and to be more efficient."

Co-authors of the paper are Elizabeth Ottesen, Curtis Young, Scott Gifford, John Eppley, Roman Marin III, Stephan Schuster and Christopher Scholin.

The research also was funded by the Gordon and Betty Moore Foundation.

-NSF-


Media Contacts
Cheryl Dybas,

Sunday, July 6, 2014

EPA WARNS OF SWIMMING RELATED ILLNESSES

FROM:  U.S. ENVIRONMENTAL PROTECTION AGENCY 
Human Health

Most of the time when beaches are closed or advisories are issued, it's because the water has high levels of harmful microorganisms (or microbes) that come from untreated or partially treated sewage: bacteria, viruses, or parasites. We also use the word "pathogens" when they can cause disease in humans, animals, and plants.
Illnesses.

hildren, the elderly, and people with weakened immune systems are most likely to develop illnesses or infections after coming into contact with polluted water, usually while swimming. The most common illness is gastroenteritis, an inflammation of the stomach and the intestines that can cause symptoms like vomiting, headaches, and fever. Other minor illnesses include ear, eye, nose, and throat infections

Fortunately, while swimming-related illnesses are unpleasant, they are usually not very serious - they require little or no treatment or get better quickly upon treatment, and they have no long-term health effects. In very polluted water, however, swimmers can sometimes be exposed to more serious diseases like dysentery, hepatitis, cholera, and typhoid fever.

Most swimmers are exposed to waterborne pathogens when they swallow the water. People can get some infections simply from getting polluted water on their skin or in their eyes. In rare cases, swimmers can develop illnesses or infections if an open wound is exposed to polluted water.

Not all illnesses from a day at the beach are from swimming. Food poisoning from improperly refrigerated picnic lunches may also have some of the same symptoms as swimming-related illnesses, including stomachache, nausea, vomiting, and diarrhea.

It is also possible that people may come into contact with harmful chemicals in beach waters during or after major storms, especially if they swim near what we call “outfalls,” where sewer lines drain into the water. You can learn more about this by visiting our web site for stormwater.

Finally, the sun can hurt you if you're not careful. Overexposure can cause sunburn, and over time, it can lead to more serious problems like skin cancer. The sun can also dehydrate you and cause heat-related illnesses like heat exhaustion, muscle cramps, and heat stroke. Learn more about sun safety at our SunWise site or heat-related illnesses at the Centers for Disease Control and Prevention site.

How to Stay Safe

There are several things you can do to reduce the likelihood of getting sick from swimming at the beach. First, you should find out if the beach you want to go to is monitored regularly and posted for closures or swimming advisories. You are less likely to be exposed to polluted water at beaches that are monitored regularly and posted for health hazards.

In areas that are not monitored regularly, choose swimming sites in less developed areas with good water circulation, such as beaches at the ocean. If possible, avoid swimming at beaches where you can see discharge pipes or at urban beaches after a heavy rainfall.

To find out about the beaches you want to visit, contact the local beach manager.

Since most swimmers are exposed to pathogens by swallowing the water, you will be less likely to get sick if you wade or swim without putting your head under water.

Sunday, May 4, 2014

NSF AND THE VIRUS PIRATES

FROM:  THE NATIONAL SCIENCE FOUNDATION 
Undersea warfare: Viruses hijack deep-sea bacteria at hydro-thermal vents
Unseen armies of viruses and bacteria battle in the deep

More than a mile beneath the ocean's surface, as dark clouds of mineral-rich water billow from seafloor hot springs called hydrothermal vents, unseen armies of viruses and bacteria wage war.

Like pirates boarding a treasure-laden ship, the viruses infect bacterial cells to get the loot: tiny globules of elemental sulfur stored inside the bacterial cells.

Instead of absconding with their prize, the viruses force the bacteria to burn their valuable sulfur reserves, then use the unleashed energy to replicate.

"Our findings suggest that viruses in the dark oceans indirectly access vast energy sources in the form of elemental sulfur," said University of Michigan marine microbiologist and oceanographer Gregory Dick, whose team collected DNA from deep-sea microbes in seawater samples from hydrothermal vents in the Western Pacific Ocean and the Gulf of California.

"We suspect that these viruses are essentially hijacking bacterial cells and getting them to consume elemental sulfur so the viruses can propagate themselves," said Karthik Anantharaman of the University of Michigan, first author of a paper on the findings published this week in the journal Science Express.

Similar microbial interactions have been observed in shallow ocean waters between photosynthetic bacteria and the viruses that prey upon them.

But this is the first time such a relationship has been seen in a chemosynthetic system, one in which the microbes rely solely on inorganic compounds, rather than sunlight, as their energy source.

"Viruses play a cardinal role in biogeochemical processes in ocean shallows," said David Garrison, a program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research. "They may have similar importance in deep-sea thermal vent environments."

The results suggest that viruses are an important component of the thriving ecosystems--which include exotic six-foot tube worms--huddled around the vents.

"The results hint that the viruses act as agents of evolution in these chemosynthetic systems by exchanging genes with the bacteria," Dick said. "They may serve as a reservoir of genetic diversity that helps shape bacterial evolution."

The scientists collected water samples from the Eastern Lau Spreading Center in the Western Pacific Ocean and the Guaymas Basin in the Gulf of California.

The samples were taken at depths of more than 6,000 feet, near hydrothermal vents spewing mineral-rich seawater at temperatures surpassing 500 degrees Fahrenheit.

Back in the laboratory, the researchers reconstructed near-complete viral and bacterial genomes from DNA snippets retrieved at six hydrothermal vent plumes.

In addition to the common sulfur-consuming bacterium SUP05, they found genes from five previously unknown viruses.

The genetic data suggest that the viruses prey on SUP05. That's not too surprising, said Dick, since viruses are the most abundant biological entities in the oceans and are a pervasive cause of mortality among marine microorganisms.

The real surprise, he said, is that the viral DNA contains genes closely related to SUP05 genes used to extract energy from sulfur compounds.

When combined with results from previous studies, the finding suggests that the viruses force SUP05 bacteria to use viral SUP05-like genes to help process stored globules of elemental sulfur.

The SUP05-like viral genes are called auxiliary metabolic genes.

"We hypothesize that the viruses enhance bacterial consumption of this elemental sulfur, to the benefit of the viruses," said paper co-author Melissa Duhaime of the University of Michigan. The revved-up metabolic reactions may release energy that the viruses then use to replicate and spread.

How did SUP05-like genes end up in these viruses? The researchers can't say for sure, but the viruses may have snatched genes from SUP05 during an ancient microbial interaction.

"There seems to have been an exchange of genes, which implicates the viruses as an agent of evolution," Dick said.

All known life forms need a carbon source and an energy source. The energy drives the chemical reactions used to assemble cellular components from simple carbon-based compounds.

On Earth's surface, sunlight provides the energy that enables plants to remove carbon dioxide from the air and use it to build sugars and other organic molecules through the process of photosynthesis.

But there's no sunlight in the deep ocean, so microbes there often rely on alternate energy sources.

Instead of photosynthesis they depend on chemosynthesis. They synthesize organic compounds using energy derived from inorganic chemical reactions--in this case, reactions involving sulfur compounds.

Sulfur was likely one of the first energy sources that microbes learned to exploit on the young Earth, and it remains a driver of ecosystems found at deep-sea hydrothermal vents, in oxygen-starved "dead zones" and at Yellowstone-like hot springs.

Dick said the new microbial findings will help researchers understand how marine biogeochemical cycles, including the sulfur cycle, will respond to global environmental changes such as the ongoing expansion of dead zones.

SUP05 bacteria, which are known to generate the greenhouse gas nitrous oxide, will likely expand their range as oxygen-starved zones continue to grow in the oceans.

In addition to Anantharaman, Dick and Duhaime, co-authors of the Science Express paper are John Breir of the Woods Hole Oceanographic Institution, Kathleen Wendt of the University of Minnesota and Brandy Toner of the University of Minnesota.

The project was also funded by the Gordon and Betty Moore Foundation and the University of Michigan Rackham Graduate School Faculty Research Fellowship Program.

-NSF-
Media Contacts
Cheryl Dybas, NSF

Wednesday, September 18, 2013

SCIENTISTS LOOKING AT MOUTH GERM CAUSING COLON CANCER

FROM:  U.S. HEALTH AND HUMAN SERVICES 
Mouth germs and cancer
From the U.S. Department of Health and Human Services, I’m Ira Dreyfuss with HHS HealthBeat.

Researchers suspect a germ in the mouth could raise the risk of colon cancer. Scientists at Case Western Reserve University School of Dental Medicine in Cleveland say it’s the bacterium known as Fn, which lives in the mouth and can be carried to other body sites. The researchers say Fn attaches to a cell receptor in the colon. The process can spur cancer cell growth.

So researcher Yiping Han created a substance that blocks the process experimentally. She can’t tell whether it will lead to a treatment. So she advises people to control mouth microbes the way we know:

“Practice good oral hygiene and keep the gum healthy because the mouth is the gateway to our health.”

The study in the journal Cell Host and Microbe was supported by the National Institutes of Health.

Learn more at healthfinder.gov.

HHS HealthBeat is a production of the U.S. Department of Health and Human Services. I’m Ira Dreyfuss.

Saturday, August 17, 2013

MICROBIAL ASTRONAUTS

FROM:  NASA 
Spaceflight Alters Bacterial Social Networks

When astronauts launch into space, a microbial entourage follows. And the sheer number of these followers would give celebrities on Twitter a run for their money. The estimate is that normal, healthy adults have ten times as many microbial cells as human cells within their bodies; countless more populate the environment around us. Although invisible to the naked eye, microorganisms – some friend, some foe – are found practically everywhere.

Microorganisms like bacteria often are found attached to surfaces living in communities known as biofilms. Bacteria within biofilms are protected by a slimy matrix that they secrete. Skip brushing your teeth tomorrow morning and you may personally experience what a biofilm feels like.

One of NASA’s goals is to minimize the health risks associated with extended spaceflight, so it is critical that methods for preventing and treating spaceflight-induced illnesses be developed before astronauts embark upon long-duration space missions. It is important for NASA to learn how bacterial communities that play roles in human health and disease are affected by spaceflight.
In two NASA-funded studies – Micro-2 and Micro-2A – biofilms made by the bacteria Pseudomonas aeruginosa were cultured on Earth and aboard space shuttle Atlantis in 2010 and 2011 to determine the impact of microgravity on their behavior. P. aeruginosa is an opportunistic human pathogen that is commonly used for biofilm studies. The research team compared the biofilms grown aboard the International Space Station bound space shuttle with those grown on the ground. The study results show for the first time that spaceflight changes the behavior of bacterial communities.

Although most bacterial biofilms are harmless, some threaten human health and safety. Biofilms can exhibit increased resistance to the immune system’s defenses or treatment with antibiotics. They also can damage vital equipment aboard spacecraft by corroding surfaces or clogging air and water purification systems that provide life support for astronauts. Biofilms cause similar problems on Earth.
“Biofilms were rampant on the Mir space station and continue to be a challenge on the International Space Station, but we still don’t really know what role gravity plays in their growth and development,” said Cynthia Collins, Ph.D., principal investigator for the study and assistant professor in the Department of Chemical and Biological Engineering at the Center for Biotechnology and Interdisciplinary Studies at the Rensselaer Polytechnic Institute in Troy, N.Y. “Before we start sending astronauts to Mars or embarking on other long-term spaceflight missions, we need to be as certain as possible that we have eliminated or significantly reduced the risk that biofilms pose to the human crew and their equipment.”
In 2010 and 2011, during the STS-132 and STS-135 missions aboard space shuttle Atlantis, astronauts in space and scientists on Earth performed nearly simultaneous parallel experiments; both teams cultured samples of P. aeruginosa bacteria using conditions that encouraged biofilm formation.

Identical hardware designed for growing cells during spaceflight were used for both the flight and ground studies. According to Collins, “artificial urine was chosen as a growth medium because it is a physiologically relevant environment for the study of biofilms formed both inside and outside the human body.”
Biofilms were cultured inside specialized fluid processing apparatus composed of glass tubes divided into chambers. The researchers loaded each tube with a membrane that provided a surface on which the bacteria could grow; the artificial urine was used for the bacteria’s nourishment. Samples of P. aeruginosa were loaded into separate chambers within each tube.

The prepared tubes were placed in groups of eight inside another specialized device called a group activation pack (GAP) – designed to activate all of the bacterial cultures at once. The research team prepared identical sets of GAPs for the concurrent spaceflight and ground experiments.

Astronauts aboard the shuttle initiated the flight experiments by operating the GAPs and introducing the bacteria to the artificial urine medium. Scientists on Earth performed the same operations with the control group of GAPs at NASA's Kennedy Space Center in Florida. After activation, the GAPs were housed in incubators on Earth and aboard the shuttle to maintain temperatures appropriate for bacterial growth.

After the microgravity samples returned to Earth, the researchers determined the thickness of the biofilms, the number of living cells and the volume of biofilm per area on the membranes. Additionally, they used a microscopy technique that allowed them to capture high-resolution images at different depths within the biofilms, revealing details of their three-dimensional structures.

What the scientists found was that the P. aeruginosa biofilms grown in space contained more cells, more mass and were thicker than the control biofilms grown on Earth. When they viewed the microscopy images of the space-grown biofilms, the researchers saw a unique, previously unobserved structure consisting of a dense mat-like “canopy” structure supported above the membrane by “columns.” The Earth grown biofilms were uniformly dense, flat structures. These results provide the first evidence that spaceflight affects community-level behavior of bacteria.

Microbes experience “low shear” conditions in microgravity that resemble conditions inside the human body, but are difficult to study. According to Collins, “Beyond its importance for astronauts and future space explorers, this research also could lead to novel methods for preventing and treating human disease on Earth. Examining the effects of spaceflight on biofilm formation can provide new insights into how different factors, such as gravity, fluid dynamics and nutrient availability affect biofilm formation on Earth. Additionally, the research findings one day could help inform new, innovative approaches for curbing the spread of infections in hospitals.”

NASA’s Space Biology Program funded the Micro-2 and Micro-2A investigations. Related space biology research continues aboard the space station, including recently selected studies that are planned for future launch to the orbiting laboratory.

Wherever we go, microbial communities will faithfully follow, making this evidence of the effects of spaceflight on bacterial physiology relevant to human health. That bacterial biofilms exhibit different behavior in space versus on Earth is critical information as NASA strives to keep astronauts healthy and safe during future long-duration space missions.
by Gianine M. Figliozzi

Friday, February 1, 2013

GOING DEEP BENEATH ANTARTIC ICE TO EXPLORE NEW WORLDS

Photo:  Lake In Anatartica. Credit:  NASA-Ames. Chris McKay.
FROM: NATIONAL SCIENCE FOUNDATION

In a Scientific and Engineering Breakthrough, NSF-funded Team Samples Antarctic Lake Beneath the Ice Sheet
Samples may contain microbes from an ecosystem isolated for thousands of years, with implications for the search for life elsewhere in extreme environments

January 28, 2013

In a first-of-its-kind feat of science and engineering, a National Science Foundation (NSF)-funded research team has successfully drilled through 800 meters (2,600 feet) of Antarctic ice to reach a subglacial lake and retrieve water and sediment samples that have been isolated from direct contact with the atmosphere for many thousands of years.

Scientists and drillers with the interdisciplinary Whillans Ice Stream Subglacial Access Research Drilling project (WISSARD) announced Jan. 28 local time (U.S. stations in Antarctica keep New Zealand time) that they had used a customized clean hot-water drill to directly obtain samples from the waters and sediments of subglacial Lake Whillans.

The samples may contain microscopic life that has evolved uniquely to survive in conditions of extreme cold and lack of light and nutrients. Studying the samples may help scientists understand not only how life can survive in other extreme ecosystems on Earth, but also on other icy worlds in our solar system.

The WISSARD teams' accomplishment, the researchers said, "hails a new era in polar science, opening a window for future interdisciplinary science in one of Earth's last unexplored frontiers."

A massive ice sheet, almost two miles thick in places, covers more than 95 percent of the Antarctic continent. Only in recent decades have airborne and satellite radar and other mapping technologies revealed that a vast, subglacial system of rivers and lakes exists under the ice sheet. Lakes vary in size, with the largest being Vostok Subglacial Lake in the Antarctic interior that is comparable in size to Lake Ontario.

WISSARD targeted a smaller lake (1.2 square miles in area), where several lakes appear linked to each other and may drain to the ocean, as the first project to obtain clean, intact samples of water and sediments from a subglacial lake.

The achievement is the culmination of more than a decade of international and national planning and 3 1/2 years of project preparation by the WISSARD consortium of U.S. universities and two international contributors. There are 13 WISSARD principal investigators representing eight different U.S. institutions.

NSF, which manages the United States Antarctic Program, provided over $10 million in grants as part of NSF's International Polar Year portfolio to support the WISSARD science and development of related technologies.

The National Aeronautics and Space Administration's (NASA) Cryospheric Sciences Program, the National Oceanic and Atmospheric Administration (NOAA), and the private Gordon and Betty Moore Foundation also provided support for the project.

The interdisciplinary research team includes groups of experts in the following areas of science: life in icy environments, led by John Priscu, of Montana State University; glacial geology, led by Ross Powell, of Northern Illinois University; and glacial hydrology, led by Slawek Tulaczyk, of the University of California, Santa Cruz.

Sharing of expertise by the groups of disciplinary experts will allow the data collected to be cast in a systemic, global context.

The WISSARD team will now process the water and sediment samples they have collected in hopes of answering seminal questions related to the structure and function of subglacial microbial life, climate history and contemporary ice-sheet dynamics.

Video surveys of the lake floor and measurements of selected physical and chemical properties of the waters and sediments will allow the team to further characterize the lake and its environs.

The approach to drilling was guided by recommendations in the 2007 National Research Council-sponsored report aimed to protect these unique environments from contamination.

A team of engineers and technicians directed by Frank Rack, of the University of Nebraska-Lincoln, designed, developed and fabricated the specialized hot-water drill that was fitted with a filtration and germicidal UV system to prevent contamination of the subglacial environment and to recover clean samples for microbial analyses. In addition, the numerous customized scientific samplers and instruments used for this project were also carefully cleaned before being lowered into the borehole through the ice and into the lake.

Following their successful retrieval, the samples are now being carefully prepared for their shipment off the ice and back to laboratories for numerous chemical and biological analyses over the coming weeks and months.

Search This Blog

Translate

White House.gov Press Office Feed