Showing posts with label GEOLOGY. Show all posts
Showing posts with label GEOLOGY. Show all posts

Friday, August 22, 2014

CLIMATE CHANGE AND MAMMALS OF THE PAST

FROM:  NATIONAL SCIENCE FOUNDATION 

Understanding how ancestors of today's mammals responded to climate change
Research provides valuable insights for future environmental challenges
About 10 million years into the current Cenozoic Era, or roughly 56 million years ago, during a climate that was hot and wet, two groups of mammals moved from land to water. These were the cetaceans, which include whales, dolphins and porpoises, and the sirenians, with its sea cows, manatees and dugongs.

Over time, their bodies began to adapt to their new environment. They lost their hind limbs, and their forelimbs began to resemble flippers. Their nostrils moved higher on their skulls. The cetaceans became carnivores, eating fish and squid, while the sirenians became herbivores, living on sea grasses and algae.

"It's an interesting example of evolution, and a natural experiment you don't normally have," says Mark T. Clementz, an associate professor of paleontology in the University of Wyoming's department of geology and geophysics. "The changes are so extreme, you can't really ignore them. By studying these groups, we can tease out the main environmental factors that affect mammalian groups as they move into a new environment, and a new ecosystem."

The National Science Foundation (NSF)-funded scientist believes that understanding how the ancient ancestors of today's mammals responded to climate change will provide valuable insights that will help in dealing with environmental challenges.

"A better understanding of how these mammals responded in the past will give us a more informed idea of how they will respond to climate change in the future," he says. "This could benefit conservation efforts down the road, for example, what to look out for, what things could benefit these groups, and what will hurt them if climate change goes as we project."

Moreover, "these mammals are like data loggers," he adds. "You can infer what the environmental conditions of the past were like, and how they changed over time, and you can say something about how marine ecosystems have changed over time."

The primary goal of his project is to compare the evolutionary ecology of these two orders, the Cetacea and the Sirenia, in the context of Cenozoic climate change.

The Cenozoic Era is made up of two time periods, the Paleogene and the Neogene, with each of those divided into epochs, which are smaller subdivisions of geologic time.

"With the appearance of whales and sea cows in the Early Eocene [the second epoch of the Paleogene], the evolution and diversification of both groups occurred across major episodes of significant climate change as the Earth moved from the greenhouse conditions of the early Paleogene and into the icehouse conditions of the Neogene, and today," he says.

Clementz is conducting his research under an NSF Faculty Early Career Development (CAREER) award, which he received in 2009. The award supports junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education, and the integration of education and research within the context of the mission of their organization.

In order to evaluate the impact of climate change on each group, Clementz is examining fossil specimens of these ancient whales and sea cows as part of marine food webs, analyzing the stable isotopes of calcium, carbon, oxygen and strontium, with an emphasis on, among other things, each group's ecological status, including diet and salinity tolerance.

"When we look at the sirenians, it appears that they had a relationship with sea grasses, which are found only in salt water, that extends far in the past," he says, noting that it is unusual for mammals to move from land to saltwater without first spending a transitional period in freshwater. "The isotopes suggest they were feeding in sea grass beds while still capable of walking on land, and skipped the freshwater phase."

However, these conclusions may change upon examining recently acquired additional specimens.

"We now have some new fossils that imply that some sea cows might have been living in freshwater, but we haven't been able to fully analyze them yet," he says. Should that be the case, "it might have been a really fast transition," he says. "They might have spent a very short amount of time in freshwater, then moved quickly into a marine habitat."

The cetaceans, on the other hand, "do show a freshwater phase," he says.

Interestingly, the sirenians are very sensitive to environmental temperatures, staying where the water is warm--20 degrees Celsius (about 68 degrees Fahrenheit) or warmer. Today's global warming may, in fact, support them but possibly only to a certain extent.

"They like it warm," he says. "In the past, when conditions were warm, their range was greater. They went further north and further south. So, from a temperature perspective, today's climate change warming could benefit them. There is some question about how the climate could affect sea grasses and algae. It could be worse for them if it hurts their food supply."

Cetaceans, being more diverse, are more complicated, he says.

"They have about 80 different species, compared to the sirenians' four," he says. "They have been more successful at taking advantages of changes. It could be related to their diet of fish and squid. In cooler environments, they had higher food productivity They exploited those periods and diversified. Now that things are getting hotter, we're not sure how this will affect them."

As part of the grant's educational component, Clementz is taking an integrative big-picture approach to teaching K-12 and college students the concepts of evolution, ecology and climate change.

For example, he wrote a children's play that explains what occurred during the evolution of whales. Later, with the input of a choreographer and dance instructor, the play expanded to include a dance recital. It has been performed multiple times on campus, and many outside groups of young children have seen it.

"The children studied the movement of whales, then learned about their movements through dance," he says. "They got to see how whales move, and how it affects their bodies, and they got to dance, using dance moves that simulate whale movement. Visually, it really was stunning, and the kids learned a lot this way."

-- Marlene Cimons, National Science Foundation
Investigators
Mark Clementz
Related Institutions/Organizations
University of Wyoming

Thursday, August 21, 2014

THE 'BONANZA KING' OF MARS

FROM:  NASA 


The pale rocks in the foreground of this fisheye image from NASA's Curiosity Mars rover include the "Bonanza King" target under consideration to become the fourth rock drilled by the Mars Science Laboratory mission.  No previous mission has collected sample material from the interior of rocks on Mars. Curiosity delivers the drilled rock powder into analytical laboratory instruments inside the rover. Curiosity's front Hazard Avoidance Camera (Hazcam), which has a very wide-angle lens, recorded this view on Aug. 14, 2014, during the 719th Martian day, or sol, of the rover's work on Mars.  The view faces southward, looking down a ramp at the northeastern end of sandy-floored "Hidden Valley." Wheel tracks show where Curiosity drove into the valley, and back out again, earlier in August 2014.  The largest of the individual flat rocks in the foreground are a few inches (several centimeters) across.  For scale, the rover's left front wheel, visible at left, is 20 inches (0.5 meter) in diameter. A map showing Hidden Valley is at http://photojournal.jpl.nasa.gov/catalog/PIA18408 . NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover and the rover's Navcam. Image Credit: NASA/JPL-Caltech

Saturday, May 17, 2014

SCIENTISTS REPORT CALIFORNIA GROUNDWATER DEPLETION MAY INCREASE EARTHQUAKE RISK

FROM:  NATIONAL SCIENCE FOUNDATION 
California Central Valley groundwater depletion slowly raises Sierra Nevada mountains
Changes may trigger small earthquakes, scientists find

Winter rains and summer groundwater pumping in California's Central Valley make the Sierra Nevada and Coast Mountain Ranges sink and rise by a few millimeters each year, creating stress on the state's faults that could increase the risk of an earthquake.

Gradual depletion of the Central Valley aquifer, because of groundwater pumping, also raises these mountain ranges by a similar amount each year--about the thickness of a dime--with a cumulative rise over the past 150 years of up to 15 centimeters (6 inches), according to calculations by a team of geophysicists.

The scientists report their results in this week's issue of the journal Nature.

While the seasonal changes in the Central Valley aquifer have not yet been firmly associated with any earthquakes, studies have shown that similar levels of periodic stress, such as that caused by the motions of the moon and sun, increase the number of microquakes on the San Andreas Fault.

If these subtle seasonal load changes are capable of influencing the occurrence of microquakes, it's possible that they can sometimes also trigger a larger event, said Roland Bürgmann, a geoscientist at the University of California, Berkeley and co-author of the Nature paper.

"The stress is very small, much less than you need to build up stress on a fault leading to an earthquake, but in some circumstances such small stress changes can be the straw that breaks the camel's back," Bürgmann said. "It could just give that extra push to get a fault to fail."

The study, based on GPS measurements from California and Nevada between 2007 and 2010, was led by scientists Colin Amos at Western Washington University and Pascal Audet of the University of Ottawa.

The detailed GPS analyses were performed by William Hammond and Geoffrey Blewitt of the University of Nevada, Reno, as part of a National Science Foundation (NSF) grant. Hammond and Blewitt, along with Amos and Audet, are also co-authors of this week's paper.

"Other studies have shown that the San Andreas Fault is sensitive to small-scale changes in stress," said Amos.

"These appear to control the timing of small earthquakes on portions of the fault, leading to more small earthquakes during drier periods of the year. Previously, such changes were thought to be driven by rainfall and other hydrologic causes."

This work ties overuse of groundwater by humans in the San Joaquin Valley to increases in the height of nearby mountain ranges and possible increases in the number of earthquakes on the San Andreas Fault, said Maggie Benoit, program director in NSF's Division of Earth Sciences, which funded the research.

"When humans deplete groundwater," said Benoit, "the amount of mass or material in Earth's crust is reduced. That disrupts Earth's force balances, causing uplift of nearby mountains and reducing a force that helps keep the San Andreas fault from slipping."

Draining of the Central Valley

Water has been pumped from California's Central Valley for more than 150 years, changing what used to be a marsh and extensive lake, Tulare Lake, into fertile agricultural fields.

In that time, about 160 cubic kilometers (40 cubic miles) of water was removed--the capacity of Lake Tahoe--dropping the water table in some areas more than 120 meters (400 feet) and the ground surface 5 meters (16 feet) or more.

The weight of water removed allowed the underlying crust or lithosphere to rise by so-called isostatic rebound, which may have raised the Sierra as much as half a foot since about 1860.

The same rebound happens as a result of the state's seasonal rains.

Torrential winter storms drop water and snow across the state, which eventually flow into Central Valley streams, reservoirs and underground aquifers, pushing down the crust and lowering the Sierra 1-3 millimeters.

In the summer, water flow into the Pacific Ocean, evaporation and ground water pumping for irrigation, which has accelerated because of drought, allows the crust and surrounding mountains to rise again.

Bürgmann said that the flexing of Earth's crust downward in winter would clamp the San Andreas fault tighter, lowering the risk of quakes, while in summer the upward flexure would relieve this clamping and perhaps increase the risk.

"The hazard is ever so slightly higher in the summer than in the wintertime," he said. "This suggests that climate and tectonics interact, and that water changes ultimately affect the deeper Earth."

High-resolution mapping with continuous GPS

Millimeter-precision measurements of elevation have been possible only in the last few years. Improved continuous GPS networks--part of the NSF EarthScope Plate Boundary Observatory, which operates 1,100 stations around the western United States--and satellite-based interferometric synthetic aperture radar have provided the data.

The measurements revealed a steady yearly rise of the Sierra of 1-2 millimeters per year, which was initially ascribed to tectonic activity deep underground, even though the rate was unusually high.

The new study provides an alternative and more reasonable explanation for the rise of the Sierra in historic times.

"The Coast Range is doing the same thing as the Sierra Nevada, which is part of the evidence that this can't be explained by tectonics," Bürgmann said.

"Both ranges have uplifted over the last few years and both exhibit the same seasonal up and down movement in phase. This tells us that something has to be driving the system at a seasonal and long-term sense, and that has to be groundwater recharging and depletion."

In response to the current drought, about 30 cubic kilometers (7.5 cubic miles) of water has been removed from Central Valley aquifers between 2003 and 2010, causing a rise of about 10 millimeters (2/5 inch) in the Sierra over that time.

-NSF-



Media Contacts
Cheryl Dybas, NSF

Tuesday, May 6, 2014

MATHEMATICIAN SEEKS TO UNDERSTAND MUDSLIDES

FROM:  NATIONAL SCIENCE FOUNDATION
The uphill challenge
Understanding mudslides and other debris flows through mathematics
Mudslides. Landslides. Volcanic debris flows. Avalanches. Falling rocks...

They can come along so suddenly that people, homes, roads and even towns are buried or destroyed without much warning. Recently, we've had dramatic reminders of this, such as the mudslide in Oso, Wash., where 41 people died; an avalanche on Mt. Everest that killed 13 experienced Sherpas and another landslide event in Jackson, Wyo. And as much as ancient Pompeii serves as the most dramatic, historic reminder of the incredible element of surprise these events can wield, what seems extraordinarily incalculable is becoming...well, calculable.

Maybe that doesn't seem so surprising on the surface as one reminisces about math story problems of long ago, such as, "if an avalanche flow is moving at a rate of 50 meters per second, how long will it take to swallow up a village located 30 kilometers away?" Unfortunately, for geologists and others involved in these issues, the particulars make the solution far from simple algebra.

Earthen, volcanic and snowy materials--all of which can move quickly downhill--do so at varying rates depending on their composition, the composition of the geological features over which they flow, and the weather. The benefit to building forecasting models--showing how the earthen materials are prone to move and where they might go post-volcano or during a particularly wet spring--is that they can assist policymaking, urban planning, insurance risk assessment and, most importantly, public safety risk reduction.

One National Science Foundation (NSF)-funded mathematician, E. Bruce Pitman from the University of Buffalo, has been modeling the dynamics of flowing granular materials since 2001 when engineering and geology colleagues came together to start estimating volcanic flow.

"You see these wonderful volcanic eruptions with the plumes, but gravity currents are going down the mountain even as all this stuff is going up into the air," Pitman said. "It can be very deadly. And depending on the mountain--if there's snow on the mountain--then you have this muddy sort of muck, so it can go even faster downhill."

Volcanic flows and mudslides are examples of what geoscientists call "gravity currents."

According to the Centers for Disease Control and Prevention, "landslides and debris flows result in 25 to 50 deaths each year" in the United States. The U.S. Geological Survey (USGS) reports that "all 50 states and the U.S. territories experience landslides and other ground-failure problems," including 36 states with "moderate to highly severe landslide hazards," which include the Appalachian and Rocky Mountains, Pacific Coast regions and Puerto Rico.

USGS notes that areas denuded because of wildfires or overdevelopment are particularly vulnerable to the whims of what's termed generally as "ground failures."

Pitman has spent the past 13 years studying the flows of the Soufrière Hills volcano on Montserrat, the Colima volcano west of Mexico City and the Ruapehu volcano in New Zealand, among other sites. Working with an engineer whose expertise is in high performance computing, statisticians and several geologists, Pitman studies geophysical mass flows, specifically volcanic avalanches and pyroclastic (hot gas and rock) flows, which are "dry" flows.

"We started modeling volcanic flows as dry volcanic flows, so the equation described the material as each particle frictionally sliding over the next particle," Pitman said. "However, we knew it wasn't only solid particles. There could be air or water too, so we developed another model. This naturally makes the analysis harder. In mudslides, you have to factor in mud, which is a viscoplastic fluid--partly like a fluid but also able to deform like a plastic material and never rebound. In wet or dry materials, you can make some reasonable predictions because flow is more or less the same. It is much harder to do that with mud."

Pitman explained the way a mathematician works to develop a predictive model of a landslide.

"There are three questions," he said. "First, is something going to happen? That is notoriously difficult--what's going on under the ground? Where's the water table? How much moisture is in the soil? What's the structure of the soil? Since we can't look under the ground, we have to make all kinds of assumptions about the ground, which poses difficulties.

"Secondly, if a slide were to occur, what areas are at risk? That's something that with a math model you can hope to explain. OK, is the east, west, north or south slope going to slip? How large a flow? Which areas downstream are at risk?

"Lastly, you have to ask what part of the model do you most care about. This helps you to simplify the modeling. Then you run the what-if scenarios to determine the greatest risk. Is it an area at risk and do mudslides happen regularly?"

According to Michael Steuerwalt, an NSF Division of Mathematical Sciences program director, many would be inclined to think that lava flows are far more complicated to model because of the issues of heat and explosive force. However, a mix of dramatically different particle sizes and shapes--which range from dirt grains to people, cars, houses, boulders and trees--can considerably complicate a slide model.

"If you're trying to deduce, for example, where under this mudslide is the house that used to be way up there (along with its inhabitants), then the model is very complicated indeed," Steuerwalt said. "Math won't solve this problem alone, either. But with topographic data, soil data and predictions of precipitation, one could make assessments of where not to build and estimates of risk. This really is an opportunity for mathematicians coupled not only with statisticians, but also with geographers, geoscientists and engineers."

Ultimately, the process needs good data. But it is also about understanding where the model has simplified the equation and created "errors."

"This may sound odd, but it's not about developing the perfect model," Pitman said. "All models have errors in them because we make simplifications to wrap our brains around the physical processes at work. The key is quantifying those errors."

So, essentially the mathematician has to know where to simplify the equation, and that too comes with his collaborative approach and working with other experts, such as volcanologists, and then interfacing with public safety officials.

For a guy who "hated" math in the fifth grade and majored in physics initially in college, this work has turned into something he loves, but also something where he feels he makes a difference.

"I love how this work stretches me and my ability to understand other fields," he said. "I get to explore what interests them and what just might be the little hook that allows me to pry apart a problem."

-- Ivy F. Kupec,
Investigators
Abani Patra
Eliza Calder
Marcus Bursik
Puneet Singla
Tarunraj Singh
E. Bruce Pitman
Related Institutions/Organizations
SUNY at Buffalo

Monday, April 28, 2014

NASA VIEWS VOLCANOES FROM RESEARCH PLANE

FROM:  NASA 
Right:  The conical Guatemalan volcano in the center is "Volcan de Agua." The two volcanoes behind it are, right to left, "Volcan de Fuego" and "Acatenango." "Volcan de Pacaya" is in the foreground.  Image Credit-NASA-Stu Broce.

A four-week NASA Earth science radar imaging mission deployment to Central and South America got underway in early April when the agency's C-20A departed it's base in Palmdale, Calif., to collect data over targets in the Gulf Coast area of the southeastern United States.

The aircraft, a modified Gulfstream III, is carrying NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument in a specialized pod under the belly of the aircraft. Developed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., UAVSAR measures ground deformation over large areas to a precision of 0.04 to 0.2 inches (0.1 to 0.5 centimeters).

The mission schedule calls for the aircraft to make stops in 10 international and U.S. locations, including the Gulf Coast. Research during the deployment is covering a variety of topics, including the volcanoes, glaciers, forest structure, levees, and subsidence. It is also providing vegetation data sets for satellite algorithm development.

The volcanoes of Central and South America are of interest because of the hazard they pose to nearby population centers. A majority of the research will focus on gathering volcano deformation measurements, with many flight lines being repeats from previous deployments. Surface deformation often precedes other signs of renewed volcanic activity.

The aircraft and its support team flew from New Orleans April 10, flying five science lines over Guatemala and El Salvador prior to arriving at Tocumen International Airport in Panama City, Panama. Several data collection flights over Columbia are planned before the aircraft moves on to South America.
The mission is scheduled to end May 6 when the aircraft returns to its base at the NASA Armstrong Flight Research Center's Palmdale facility in Southern California.

Friday, April 18, 2014

VIEW OF THE GRAND CANYON FROM THE INTERNATIONAL SPACE STATION

FROM:  NASA 

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of the Colorado River canyon and its many side canyons make an intricate landscape that contrasts with the dark green, forested plateau to the north and south. The Colorado River has done all the erosional work of carving away cubic kilometers of rock in a geologically short period of time. Visible as a darker line snaking along the bottom of the canyon, the river lies at an altitude of 715 meters (2,345 feet), thousands of meters below the North and South Rims. Temperatures are furnace-like on the river banks in the summer. But Grand Canyon Village, the classic outlook point for visitors, enjoys a milder climate at an altitude of 2,100 meters (6,890 feet). The Grand Canyon has become a geologic icon—a place where you can almost sense the invisible tectonic forces within the Earth. The North and South Rims are part of the Kaibab Plateau, a gentle tectonic swell in the landscape. The uplift of the plateau had two pronounced effects on the landscape that show up in this image. First, in drier parts of the world, forests usually indicate higher places; higher altitudes are cooler and wetter, conditions that allow trees to grow. The other geologic lesson on view is the canyon itself. Geologists now know that a river can cut a canyon only if the Earth surface rises vertically. If such uplift is not rapid, a river can maintain its course by eroding huge quantities of rock and forming a canyon. This astronaut photograph (ISS039-E-5258) was taken on March 25, 2014 by the Expedition 39 crew, with a Nikon D3S digital camera using a 180 millimeter lens, and is provided by the ISS Crew Earth Observations Facility and the Earth Science and Remote Sensing Unit, Johnson Space Center. It has been cropped and enhanced to improve contrast, and lens artifacts have been removed.  Image Credit: NASA Caption: M. Justin Wilkinson, Jacobs at NASA-JSC.

Wednesday, April 2, 2014

SHADOWY FIGURE ON THE MARTIAN SLOPES



FROM:  NASA
Shadow Portrait of NASA Rover Opportunity on Martian Slope

NASA's Mars Exploration Rover Opportunity caught its own silhouette in this late-afternoon image taken by the rover's rear hazard avoidance camera. This camera is mounted low on the rover and has a wide-angle lens.

The image was taken looking eastward shortly before sunset on the 3,609th Martian day, or sol, of Opportunity's work on Mars (March 20, 2014). The rover's shadow falls across a slope called the McClure-Beverlin Escarpment on the western rim of Endeavour Crater, where Opportunity is investigating rock layers for evidence about ancient environments.  The scene includes a glimpse into the distance across the 14-mile-wide (22-kilometer-wide) crater.
Image Credit-NASA-JPL-Caltech

Wednesday, February 19, 2014

COULD MT. HOOD GO BOOM

FROM:  NATIONAL SCIENCE FOUNDATION 
Volcanoes, including Mount Hood in the US, can quickly become active
Magma stored for thousands of years can erupt in as little as two months

New research results suggest that magma sitting 4-5 kilometers beneath the surface of Oregon's Mount Hood has been stored in near-solid conditions for thousands of years.

The time it takes to liquefy and potentially erupt, however, is surprisingly short--perhaps as little as a couple of months.

The key to an eruption, geoscientists say, is to elevate the temperature of the rock to more than 750 degrees Celsius, which can happen when hot magma from deep within the Earth's crust rises to the surface.

It was the mixing of hot liquid lava with cooler solid magma that triggered Mount Hood's last two eruptions about 220 and 1,500 years ago, said Adam Kent, an Oregon State University (OSU) geologist and co-author of a paper reporting the new findings.

Results of the research, which was funded by the National Science Foundation (NSF), are in this week's journal Nature.

"These scientists have used a clever new approach to timing the inner workings of Mount Hood, an important step in assessing volcanic hazards in the Cascades," said Sonia Esperanca, a program director in NSF's Division of Earth Sciences.

"If the temperature of the rock is too cold, the magma is like peanut butter in a refrigerator," Kent said. "It isn't very mobile.

"For Mount Hood, the threshold seems to be about 750 degrees (C)--if it warms up just 50 to 75 degrees above that, it greatly decreases the viscosity of the magma and makes it easier to mobilize."

The scientists are interested in the temperature at which magma resides in the crust, since it's likely to have important influence over the timing and types of eruptions that could occur.

The hotter magma from deeper down warms the cooler magma stored at a 4-5 kilometer depth, making it possible for both magmas to mix and be transported to the surface to produce an eruption.

The good news, Kent said, is that Mount Hood's eruptions are not particularly violent. Instead of exploding, the magma tends to ooze out the top of the peak.

A previous study by Kent and OSU researcher Alison Koleszar found that the mixing of the two magma sources, which have different compositions, is both a trigger to an eruption and a constraining factor on how violent it can be.

"What happens when they mix is what happens when you squeeze a tube of toothpaste in the middle," said Kent. "Some comes out the top, but in the case of Mount Hood it doesn't blow the mountain to pieces."

The study involved scientists at OSU and the University of California, Davis. The results are important, they say, because little was known about the physical conditions of magma storage and what it takes to mobilize that magma.

Kent and UC-Davis colleague Kari Cooper, also a co-author of the Nature paper, set out to discover whether they could determine how long Mount Hood's magma chamber has been there, and in what condition.

When Mount Hood's magma first rose up through the crust into its present-day chamber, it cooled and formed crystals.

The researchers were able to document the age of the crystals by the rate of decay of naturally occurring radioactive elements. However, the growth of the crystals is also dictated by temperature: if the rock is too cold, they don't grow as fast.

The combination of the crystals' age and apparent growth rate provides a geologic fingerprint for determining the approximate threshold for making the near-solid rock viscous enough to cause an eruption.

"What we found was that the magma has been stored beneath Mount Hood for at least 20,000 years--and probably more like 100,000 years," Kent said.

"During the time it's been there, it's been in cold storage--like peanut butter in the fridge--a minimum of 88 percent of the time, and likely more than 99 percent of the time."

Although hot magma from below can quickly mobilize the magma chamber at 4-5 kilometers below the surface, most of the time magma is held under conditions that make it difficult for it to erupt.

"What's encouraging is that modern technology should be able to detect when the magma is beginning to liquefy or mobilize," Kent said, "and that may give us warning of a potential eruption.

"Monitoring gases and seismic waves, and studying ground deformation through GPS, are a few of the techniques that could tell us that things are warming."

The researchers hope to apply these techniques to other, larger volcanoes to see if they can determine the potential for shifting from cold storage to potential eruption--a development that might bring scientists a step closer to being able to forecast volcanic activity.

-NSF-

Thursday, February 13, 2014

LANDSAT 8 CELEBRATES ONE YEAR IN SPACE

FROM:  NASA 

On Feb. 11, 2013, the Landsat 8 satellite rocketed into a sunny California morning aboard a powerful Atlas V and began its life in orbit. In the year since launch, scientists have been working to understand the information the satellite has been sending back. Some have been calibrating the data—checking it against ground observations and matching it to the rest of the 42-year-long Landsat record. At the same time, the broader science community has been learning to use the new data.

The map above—one of the first complete views of the United States from Landsat 8—is an example of how scientists are testing Landsat 8 data. David Roy, a co-leader of the USGS-NASA Landsat science team and researcher at South Dakota State University, made the map with observations taken during August 2013 by the satellite’s Operational Land Imager. The strips in the image above are a result of the way Landsat 8 operates. Like its predecessors, Landsat 8 collects data in 185-kilometer (115-mile) wide strips called swaths or paths. Each orbit follows a predetermined ground track so that the same path is imaged each time an orbit is repeated. It takes 233 paths and 16 days to cover all of the land on Earth. This means that every land surface has the potential to be imaged once every 16 days, giving Roy two or three opportunities to get a cloud-free view of each pixel in the United States in a month. Image Credit-NASA-David Roy.

Saturday, January 4, 2014

NASA INFO ON MT. EVEREST

FROM:  NASA   

Fourteen mountain peaks on Earth stand taller than 8,000 meters (26,247 feet). The tallest of these “eight-thousanders” is Mount Everest, the standard to which all other mountains are compared. The Nepalese name for the mountain is Sagarmatha: “mother of the universe.” Everest’s geological story began 40 million years ago when the Indian subcontinent began a slow-motion collision with Asia. The edges of two continents jammed together and pushed up the massive ridges that make up the Himalayas today. Pulitzer-winning journalist John McPhee summed up the wonder of the mountain’s history when he wrote Annals of the Former World: “The summit of Mount Everest is marine limestone. This one fact is a treatise in itself on the movements of the surface of the Earth. If by some fiat, I had to restrict all this writing to one sentence; this is the one I would choose.” In other words, when climbers reach the top of Mount Everest, they are not standing on hard igneous rock produced by volcanoes. Rather, they are perched on softer sedimentary rock formed by the skeletons of creatures that lived in a warm ocean off the northern coast of India tens of millions of years ago. Meanwhile, glaciers have chiseled Mount Everest’s summit into a huge, triangular pyramid, defined by three faces and three ridges that extend to the northeast, southeast, and northwest. The southeastern ridge is the most widely used climbing route. It is the one that Edmund Hillary and Tenzing Norgay followed in May 1953 when they became the first climbers to reach the summit and return safely. Climbers who follow this route begin by trekking past Khumbu glacier and through the Khumbu ice fall, an extremely dangerous area where ice tumbles off the mountain into a chaotic waterfall of ice towers and crevasses. Next, climbers reach a bowl-shaped valley—a cirque—called the Western Cwm (pronounced coom) and then the foot of the Lhotse Face, a 1,125-meter (3,691-foot) wall of ice.

Climbing up the Lhotse face leads to the South Col, the low point in the ridge that connects Everest to Lhotse. It is from the South Col that most expeditions launch their final assault on the summit, following a route up the southeastern ridge. Some climbers opt for the northern ridge, which is known for having harsher winds and colder temperatures. That is the path that British climbers George Mallory and Andrew Irvine used in 1924 during what may, in fact, have been the first ascent.

Whether the pair made it to the summit remains a topic of controversy, but what is known for certain is that the men were spotted pushing toward the peak just before the arrival of a storm. Mallory’s corpse was discovered near the northeast ridge at 8,160 meters (26,772 feet) by an American climber in 1999, but it still isn’t clear whether he reached the summit. Despite its reputation as an extremely dangerous mountain, commercial guiding has done much to tame Everest in the last few decades. As of March 2012, there had been 5,656 successful ascents of Everest, while 223 people had died—a fatality rate of 4 percent. > Read More Image Credit: NASA Earth Observatory image by Jesse Allen and Robert Simmon, using EO-1 ALI data from the NASA EO-1 team, archived on the USGS Earth Explorer. Caption: Adam Voiland.

Wednesday, May 22, 2013

SCIENTISTS FIND EARLY MONKEY-APE SPLIT

Olive Baboon.  Credit:  Wikimedia.
FROM: NATIONAL SCIENCE FOUNDATION
Scientists Discover Oldest Evidence of Split Between Old World Monkeys and Apes

Two fossil discoveries from the East African Rift reveal new information about the evolution of primates, according to a paper published this week in the journal Nature.

Findings by scientists at Ohio University's (OU) Heritage College of Osteopathic Medicine and colleagues document the oldest fossils of two major groups of primates: the group that today includes apes and humans (hominoids) and the group that includes Old World monkeys such as baboons and macaques (cercopithecoids).

The research, funded in part by the National Science Foundation (NSF), underscores the integration of paleontological and geological approaches that are essential for deciphering complex relationships in vertebrate evolutionary history, the scientists said.

Geological analyses of the study site indicate that the finds are 25 million years old, significantly older than fossils previously documented for either of the two groups.

Both fossil discoveries uncovered primate species newly recognized by scientists. The fossils were collected from a single site in the Rukwa Rift Basin of Tanzania.

Rukwapithecus fleaglei is an early hominoid represented by a fossil mandible in which several teeth were preserved. Nsungwepithecus gunnelli is an early cercopithecoid represented by a tooth and jaw fragment.

The primates lived during the Oligocene epoch, which lasted from 34 to 23 million years ago. The research documents that the two lineages were already evolving separately during this geologic period.

"The late Oligocene is among the least sampled intervals in primate evolutionary history, and the Rukwa field area provides a first glimpse of the animals that were alive at that time from Africa south of the equator," said Nancy Stevens, Ohio University paleontologist and first author of the paper.

Co-authors are Patrick O'Connor, Cornelia Krause and Eric Gorscak of Ohio University; Erik Seiffert of SUNY Stony Brook University; Eric Roberts of James Cook University in Australia; Mark Schmitz of Boise State University; Sifa Ngasala of Michigan State University; Tobin Hieronymus of Northeast Ohio Medical University and Joseph Temu of the Tanzania Antiquities Unit.

Documenting the early evolutionary history of these groups has been elusive, as there are few fossil-bearing deposits of the appropriate age, Stevens said.

"Finding monkey and ape fossils of this age in Africa has been extremely difficult, but to find both branches in a well-dated fossil layer this old is extraordinary," said Paul Filmer, program director in NSF's Division of Earth Sciences.

"These 'oldest-yet' fossils reinforce that the Old World monkey and ape branches were already separate 25 million years ago."

Using an approach that dated multiple minerals in the rocks, geologists could determine a precise age for the specimens.

"The rift setting provides an advantage in that it preserves datable materials together with these important primate fossils," said Roberts.

Prior to these finds, the oldest fossil representatives of the hominoid and cercopithecoid lineages were recorded from the early Miocene, at sites dating millions of years younger.

"The Nsungwe Formation of Tanzania is a unique site, both geographically and chronologically, with excellent potential to yield important fossils from a vitally important time period and biogeographic area of Africa," said Carolyn Ehardt, NSF program director for biological anthropology.

"To have described two highly distinctive and completely new primates, one designated the oldest known fossil 'ape' and the other the oldest 'stem' member of the Old World monkey clade, is remarkable."

The new discoveries are particularly important for helping reconcile a long-standing disagreement between divergence time estimates derived from analyses of DNA sequences from living primates versus those suggested by the primate fossil record, Stevens said.

Studies of clock-like mutations in primate DNA have indicated that the split between apes and Old World monkeys occurred between 30 million and 25 million years ago.

"Fossils from the Rukwa Rift Basin in southwestern Tanzania provide the first real test of the hypothesis that these groups diverged so early, by revealing a novel glimpse into this late Oligocene terrestrial ecosystem," Stevens said.

The new fossils are the first primate discoveries from this precise location in the Rukwa deposits, and represent two of only a handful of known primate species from the entire late Oligocene, globally.

The scientists scanned the specimens in OU's MicroCT scanner, allowing them to create detailed three-dimensional reconstructions of the ancient specimens. The reconstructions were used for comparisons with other fossils.

"This is another great example of how modern imaging and computational approaches allow us to address more refined questions about vertebrate evolutionary history," said O'Connor.

In addition to unveiling these newly discovered primates, the Rukwa field sites have produced several other fossil vertebrate and invertebrate species new to science.

The late Oligocene interval is interesting because it provides a final snapshot of the unique species inhabiting Africa prior to the large-scale faunal exchange with Eurasia that occurred later in the Cenozoic Era, Stevens said.

A key aspect of the Rukwa Rift Basin project, she said, is the interdisciplinary nature of the research team, with paleontologists and geologists working together to reconstruct vertebrate evolutionary history in the context of the developing East African Rift System.

"Since its inception, the project has employed a multi-faceted approach to addressing a series of large-scale biological and geological questions centered on the East African Rift System in Tanzania," O'Connor said.

The research was also funded by the Leakey Foundation and the National Geographic Society.

-NSF-

Search This Blog

Translate

White House.gov Press Office Feed